Conformation of a semiflexible filament in a quenched random potential

被引:4
|
作者
Slepukhin, Valentin M. [1 ]
Grill, Maximilian J. [2 ]
Mueller, Kei W. [2 ,3 ]
Wall, Wolfgang A. [2 ]
Levine, Alex J. [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Tech Univ Munich, Inst Computat Mech, Dept Mech Engn, D-80333 Munich, Germany
[3] Lawrence Livermore Natl Lab, Computat Engn Div, Struct & Appl Mech Grp, 7000 East Ave, Livermore, CA 94550 USA
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
DYNAMICS; INTERFACES; THRESHOLD;
D O I
10.1103/PhysRevE.99.042501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motivated by the observation of the storage of excess elastic free energy, prestress, in cross-linked semiflexible networks, we consider the problem of the conformational statistics of a single semiflexible polymer in a quenched random potential. The random potential, which represents the effect of cross-linking to other filaments, is assumed to have a finite correlation length xi and mean strength V-0. We examine statistical distribution of curvature in filament with thermal persistence length l(P) and length L-0 in the limit in which l(P) >> L-0. We compare our theoretical predictions to finite-element Brownian dynamics simulations. Finally, we comment on the validity of replica field techniques in addressing these questions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] THE RESPONSE OF SEMIFLEXIBLE LIQUID-CRYSTALS TO QUENCHED RANDOM DISORDER
    DADMUN, M
    MUTHUKUMAR, M
    JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (01): : 578 - 585
  • [2] Coupled oscillators in quenched random potential
    Nogawa, T
    Yoshino, H
    Matsukawa, H
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (161): : 306 - 309
  • [3] Stretching semiflexible filaments with quenched disorder
    Benetatos, Panayotis
    Terentjev, Eugene M.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [4] Glass forming liquids in a quenched random potential
    Arjun, H.
    Chaudhuri, Pinaki
    SOFT MATTER, 2020, 16 (14) : 3574 - 3585
  • [5] Freezing of classical fluids in a quenched random potential
    Dasgupta, C
    PHASE TRANSITIONS, 2002, 75 (4-5) : 441 - 450
  • [6] Nonlinear elasticity of semiflexible filament networks
    Meng, Fanlong
    Terentjev, Eugene M.
    SOFT MATTER, 2016, 12 (32) : 6749 - 6756
  • [7] Phase diagram of a classical fluid in a quenched random potential
    Thalmann, F
    Dasgupta, C
    Feinberg, D
    EUROPHYSICS LETTERS, 2000, 50 (01): : 54 - 60
  • [8] Localization and freezing of a Gaussian chain in a quenched random potential
    Rostiashvili, VG
    Vilgis, TA
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (15): : 7194 - 7205
  • [9] Designing highly tunable semiflexible filament networks
    Pandolfi, Ronald J.
    Edwards, Lauren
    Johnston, David
    Becich, Peter
    Hirst, Linda S.
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [10] Dynamics of a semiflexible filament under external force
    Ranjith, P
    Kumar, PBS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) : 220 - 229