Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi-Yau manifolds

被引:43
|
作者
Braun, Volker [1 ]
Brelidze, Tamaz [1 ]
Douglas, Michael R. [2 ]
Ovrut, Burt A. [1 ]
机构
[1] Univ Penn, Dept Phys, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
来源
关键词
superstrings and heterotic strings; superstring vacua; compactification and string models; space-time symmetries;
D O I
10.1088/1126-6708/2008/07/120
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A numerical algorithm for explicitly computing the spectrum of the Laplace-Beltrami operator on Calabi-Yau threefolds is presented. The requisite Ricci-flat metrics are calculated using a method introduced in previous papers. To illustrate our algorithm, the eigenvalues and eigenfunctions of the Laplacian are computed numerically on two different quintic hypersurfaces, some Z(5) X Z(5) quotients of quintics, and the Calabi-Yau threefold with Z(3) X Z(3) fundamental group of a heterotic standard model. The multiplicities of the eigenvalues are explained in detail in terms of the irreducible representations of the finite isometry groups of the threefolds.
引用
收藏
页数:57
相关论文
共 50 条
  • [21] NEW COMPACTIFICATIONS ON CALABI-YAU MANIFOLDS
    NEPOMECHIE, RI
    WU, YS
    ZEE, A
    PHYSICS LETTERS B, 1985, 158 (04) : 311 - 315
  • [22] Calabi-Yau manifolds and sporadic groups
    Andreas Banlaki
    Abhishek Chowdhury
    Abhiram Kidambi
    Maria Schimpf
    Harald Skarke
    Timm Wrase
    Journal of High Energy Physics, 2018
  • [23] ADE QUANTUM CALABI-YAU MANIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1990, 339 (01) : 121 - 157
  • [24] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [25] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268
  • [26] Some results on generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1273 - 1292
  • [27] Fano manifolds of Calabi-Yau Hodge type
    Iliev, Atanas
    Manivel, Laurent
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2225 - 2244
  • [28] Orientability for gauge theories on Calabi-Yau manifolds
    Cao, Yalong
    Leung, Naichung Conan
    ADVANCES IN MATHEMATICS, 2017, 314 : 48 - 70
  • [29] COLLAPSING OF ABELIAN FIBERED CALABI-YAU MANIFOLDS
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (03) : 517 - 551
  • [30] Crystal Melting and Toric Calabi-Yau Manifolds
    Hirosi Ooguri
    Masahito Yamazaki
    Communications in Mathematical Physics, 2009, 292 : 179 - 199