An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations

被引:155
|
作者
Toelke, Jonas [1 ]
Freudiger, Soeren [1 ]
Krafczyk, Manfred [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Comp Anwendungen Bauingenieurwesen, D-3300 Braunschweig, Germany
关键词
D O I
10.1016/j.compfluid.2005.08.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The lattice Boltzmann (LB) method is extended and adapted to simulate multi-phase flows on non-uniform tree-type grids. Our model is an extension of the model developed by Gunstensen [Gunstensen AK, Rothman D. Lattice Boltzmann model of immiscible fluids. Phys Rev A 1991;43(8):4320-4327], which is based on the Rothman-Keller model [Rothman DH, Keller JM. Immiscible cellular automaton fluids. J Stat Phys 1988;52:1119-1127]. A first approach we use an a priori grid refinement. We find that the maximum number of possible grid levels for problems with dominant capillary forces is very restricted, if the physical interface is allowed to pass over grid interfaces. Thus a second approach based on adaptive grids was developed, where the physical interface is always discretized on the finest grid level. Efficient and flexible data structures have been developed to manage the remeshing. The application of the scheme for a rising bubble in three dimensions shows very good agreement with the semi-analytical solution and demonstrates the efficiency of our approach. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:820 / 830
页数:11
相关论文
共 50 条
  • [31] Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions
    Chen, Xiaodong
    Yang, Vigor
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 269 : 22 - 39
  • [32] Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media
    Lautenschlaeger, Martin P.
    Weinmiller, Julius
    Kellers, Benjamin
    Danner, Timo
    Latz, Arnulf
    ADVANCES IN WATER RESOURCES, 2022, 170
  • [33] Optimization of Multi-Phase Compressible Lattice Boltzmann Codes on Massively Parallel Multi-Core Systems
    Biferale, Luca
    Mantovani, Filippo
    Pivanti, Marcello
    Pozzati, Fabio
    Sbragaglia, Mauro
    Scagliarini, Andrea
    Schifano, Sebastiano Fabio
    Toschi, Federico
    Tripiccione, Raffaele
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 994 - 1003
  • [34] Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions
    Xing, Z. B.
    Han, Xingchao
    Ke, Hanbing
    Zhang, Q. G.
    Zhang, Zhiping
    Xu, Huijin
    Wang, Fuqiang
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (08) : 2754 - 2788
  • [35] Scalable Flow Simulations with the Lattice Boltzmann Method
    Holzer, Markus
    Staffelbach, Gabriel
    Rocchi, Ilan
    Badwaik, Jayesh
    Herten, Andreas
    Vavrik, Radim
    Vysocky, Ondrej
    Riha, Lubomir
    Cuidard, Romain
    Ruede, Ulrich
    PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2023, CF 2023, 2023, : 297 - 303
  • [36] Bubble flow simulations with the lattice Boltzmann method
    Sankaranarayanan, K
    Shan, X
    Kevrekidis, IG
    Sundaresan, S
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (21) : 4817 - 4823
  • [37] Lattice Boltzmann simulations of pinched flow fractionation
    Shardt, Orest
    Mitra, Sushanta K.
    Derksen, J. J.
    CHEMICAL ENGINEERING SCIENCE, 2012, 75 : 106 - 119
  • [38] Lattice Boltzmann model for reactive flow simulations
    Di Rienzo, A. F.
    Asinari, P.
    Chiavazzo, E.
    Prasianakis, N. I.
    Mantzaras, J.
    EPL, 2012, 98 (03)
  • [39] THEORY OF LATTICE BOLTZMANN SIMULATIONS OF GLACIER FLOW
    BAHR, DB
    RUNDLE, JB
    JOURNAL OF GLACIOLOGY, 1995, 41 (139) : 634 - 640
  • [40] Flow Simulations Using Two Dimensional Thermal Lattice Boltzmann Method
    Almalowi, Saeed J.
    Oztekin, Alparslan
    JOURNAL OF APPLIED MATHEMATICS, 2012,