An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations

被引:155
|
作者
Toelke, Jonas [1 ]
Freudiger, Soeren [1 ]
Krafczyk, Manfred [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Comp Anwendungen Bauingenieurwesen, D-3300 Braunschweig, Germany
关键词
D O I
10.1016/j.compfluid.2005.08.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The lattice Boltzmann (LB) method is extended and adapted to simulate multi-phase flows on non-uniform tree-type grids. Our model is an extension of the model developed by Gunstensen [Gunstensen AK, Rothman D. Lattice Boltzmann model of immiscible fluids. Phys Rev A 1991;43(8):4320-4327], which is based on the Rothman-Keller model [Rothman DH, Keller JM. Immiscible cellular automaton fluids. J Stat Phys 1988;52:1119-1127]. A first approach we use an a priori grid refinement. We find that the maximum number of possible grid levels for problems with dominant capillary forces is very restricted, if the physical interface is allowed to pass over grid interfaces. Thus a second approach based on adaptive grids was developed, where the physical interface is always discretized on the finest grid level. Efficient and flexible data structures have been developed to manage the remeshing. The application of the scheme for a rising bubble in three dimensions shows very good agreement with the semi-analytical solution and demonstrates the efficiency of our approach. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:820 / 830
页数:11
相关论文
共 50 条
  • [1] Advection-diffusion lattice Boltzmann scheme for hierarchical grids
    Stiebler, Maik
    Toelke, Jonas
    Krafczyk, Manfred
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) : 1576 - 1584
  • [2] Parallel Free-Surface and Multi-Phase Simulations in Complex Geometries Using Lattice Boltzmann Methods
    Toelke, Jonas
    Ahrenholz, Benjamin
    Hegewald, Jan
    Krafczyk, Manfred
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCH/MUNICH 2007, 2009, : 397 - 410
  • [3] Capillary filling using lattice Boltzmann equations: The case of multi-phase flows
    Diotallevi, F.
    Biferale, L.
    Chibbaro, S.
    Lamura, A.
    Pontrelli, G.
    Sbragaglia, M.
    Succi, S.
    Toschi, F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 166 : 111 - 116
  • [4] Capillary filling using lattice Boltzmann equations: The case of multi-phase flows
    F. Diotallevi
    L. Biferale
    S. Chibbaro
    A. Lamura
    G. Pontrelli
    M. Sbragaglia
    S. Succi
    F. Toschi
    The European Physical Journal Special Topics, 2009, 166 : 111 - 116
  • [5] Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios
    Bao, Jie
    Schaefer, Laura
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 1860 - 1871
  • [6] Investigation of Galilean invariance of multi-phase lattice Boltzmann methods
    Wagner, AJ
    Li, Q
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) : 105 - 110
  • [7] RESEARCHES ON LEAKAGE WITH LUBRICATING OIL USING A COMPOSITE MULTI-PHASE LATTICE BOLTZMANN METHOD
    Li, Yuhan
    Li, Minxia
    Hu, Yusheng
    Xu, Jia
    Ren, Liping
    THERMAL SCIENCE, 2022, 26 (01): : 221 - 231
  • [8] Multi-phase flow simulations of injector flows
    Alajbegovic, A
    Greif, D
    Meister, G
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1220 - 1224
  • [9] Lattice Boltzmann scheme for diffusion on triangular grids
    van der Sman, RGM
    COMPUTATIONAL SCIENCE - ICCS 2003, PT I, PROCEEDINGS, 2003, 2657 : 1072 - 1081
  • [10] Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in flow channel of fuel cell
    Hou, Yuze
    Deng, Hao
    Du, Qing
    Jiao, Kui
    JOURNAL OF POWER SOURCES, 2018, 393 : 83 - 91