A THERMODYNAMIC MODEL OF A HIGH TEMPERATURE HYBRID COMPRESSED AIR ENERGY STORAGE SYSTEM FOR GRID STORAGE

被引:0
|
作者
Houssainy, Sammy [1 ]
Lakeh, Reza Baghaei [2 ]
Kavehpour, H. Pirouz [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[2] Calif State Polytech Univ Pomona, Pomona, CA 91768 USA
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet's temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coalfired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Thermodynamic analysis of storage cavern in advanced adiabatic compressed air energy storage system
    Li, Xue-Mei
    Yang, Ke
    Zhang, Yuan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (03): : 513 - 516
  • [12] Thermodynamic analysis for a novel steam injection adiabatic compressed air energy storage hybrid system
    Ran, Peng
    Zhang, Haiyang
    Qiao, Yu
    Wang, Jing
    Li, Zheng
    Wang, Yase
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [13] Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system
    Ji, Wei
    Zhou, Yuan
    Sun, Yu
    Zhang, Wu
    An, Baolin
    Wang, Junjie
    ENERGY CONVERSION AND MANAGEMENT, 2017, 142 : 176 - 187
  • [14] Hybrid CCHP system combined with compressed air energy storage
    He, Fengjuan
    Xu, Yujie
    Zhang, Xinjing
    Liu, Chang
    Chen, Haisheng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (13) : 1807 - 1818
  • [15] Modeling and verification of hybrid energy storage system based on micro compressed air energy storage
    Wang, Chengshan
    Wu, Zhen
    Yang, Xianshen
    Zhang, Shuhuai
    Liu, Yixin
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2014, 38 (23): : 22 - 26
  • [16] Thermodynamic analysis of an advanced adiabatic compressed air energy storage system integrated with a high-temperature thermal energy storage and an Organic Rankine Cycle
    Zhu, Jiahua
    Zhang, Yanan
    Yu, Boxu
    Liao, Zhirong
    Xu, Chao
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [17] Thermodynamic analysis of an improved adiabatic compressed air energy storage system
    Peng, Hao
    Yang, Yu
    Li, Rui
    Ling, Xiang
    APPLIED ENERGY, 2016, 183 : 1361 - 1373
  • [18] Thermodynamic characteristics of a novel supercritical compressed air energy storage system
    Guo, Huan
    Xu, Yujie
    Chen, Haisheng
    Zhou, Xuezhi
    ENERGY CONVERSION AND MANAGEMENT, 2016, 115 : 167 - 177
  • [19] Compressed air energy storage system
    Saruta, Hiroki
    Sato, Takashi
    Nakamichi, Ryo
    Toshima, Masatake
    Kubo, Yohei
    R and D: Research and Development Kobe Steel Engineering Reports, 2020, 70 (01): : 42 - 46
  • [20] Computer Model for a Wind-Diesel Hybrid System with Compressed Air Energy Storage
    Martinez, Nicolas
    Benchaabane, Youssef
    Silva, Rosa Elvira
    Ilinca, Adrian
    Ibrahim, Hussein
    Chandra, Ambrish
    Rousse, Daniel R.
    ENERGIES, 2019, 12 (18)