Nonlinear multigrid eigenvalue solver utilizing nonorthogonal localized orbitals

被引:7
|
作者
Feng, G
Beck, TL [1 ]
机构
[1] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
来源
关键词
D O I
10.1002/pssb.200541446
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A nonlinear multigrid eigenvalue solver utilizing nonorthogonal localized orbitals is formulated and implemented on a real-space grid. The localization of orbitals is necessary to achieve linear scaling in the computational effort. Numerical tests are performed on the benzene molecule, C-20, and C-60. The localization centers for the orbitals are allowed to move so as to lower the total energy. The convergence rate depends on the radius of the confined regions. Also, the convergence rate slows when the number of atoms in the system increases, and/or when unoccupied orbitals are included. The slowed convergence is due to ill-conditioning, which is related to the kinetic contribution to the total energy. Work is in progress to alleviate the ill-conditioning. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [31] Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver
    Vandenberghe, William G.
    Fischetti, Massimo V.
    Van Beeumen, Roel
    Meerbergen, Karl
    Michiels, Wim
    Effenberger, Cedric
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 753 - 762
  • [32] Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver
    William G. Vandenberghe
    Massimo V. Fischetti
    Roel Van Beeumen
    Karl Meerbergen
    Wim Michiels
    Cedric Effenberger
    Journal of Computational Electronics, 2014, 13 : 753 - 762
  • [33] Continuous nonlinear eigenvalue solver with applications to the design of electro/magnetorheological sandwich structures
    Ammovilli, V.
    Bilasse, M.
    Charpentier, I.
    SMART MATERIALS AND STRUCTURES, 2019, 28 (08)
  • [34] A parallel nonlinear multigrid solver for unsteady incompressible flow simulation on multi-GPU cluster
    Shi, Xiaolei
    Agrawal, Tanmay
    Lin, Chao-An
    Hwang, Feng-Nan
    Chiu, Tzu-Hsuan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 414
  • [35] Nonlinear Diffusion Acceleration Method with Multigrid in Energy for k-Eigenvalue Neutron Transport Problems
    Cornejo, Luke R.
    Anistratov, Dmitriy Y.
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 184 (04) : 514 - 526
  • [36] Robust Nonlinear Newton Solver With Adaptive Interface-Localized Trust Regions
    Klemetsdal, Oystein S.
    Moyner, Olav
    Lie, Knut-Andreas
    SPE JOURNAL, 2019, 24 (04): : 1576 - 1594
  • [37] An aggregation-based nonlinear multigrid solver for two-phase flow and transport in porous media
    Lee, Chak Shing
    Hamon, Francois P.
    Castelletto, Nicola
    Vassilevski, Panayot S.
    White, Joshua A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 113 : 282 - 299
  • [38] On the Derivation of a Fast Solver for Nonlinear Systems of Equations Utilizing Frozen Substeps with Applications
    Liu, Mingming
    Shateyi, Stanford
    AXIOMS, 2025, 14 (02)
  • [39] Efficient Newton-multigrid FEM solver for multifield nonlinear coupled problems applied to thixoviscoplastic flows
    Begum, Naheed
    Ouazzi, Abderrahim
    Turek, Stefan
    Proceedings in Applied Mathematics and Mechanics, 2023, 23 (02):
  • [40] Asymptotic Analysis of Localized Solutions to Some Linear and Nonlinear Biharmonic Eigenvalue Problems
    Kropinski, M. C.
    Lindsay, A. E.
    Ward, M. J.
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (04) : 347 - 408