On the convergence of maximal monotone operators

被引:11
|
作者
Penot, JP
Alinescu, CZ
机构
[1] Fac Sci, CNRS, ERS 2055, Lab Math Appl, F-64000 Pau, France
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
关键词
bounded convergence; convergence; convex function; maximal monotone operator; monotone operator; qualification condition;
D O I
10.1090/S0002-9939-05-08275-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of maximal monotone operators with the help of representations by convex functions. In particular, we prove the convergence of a sequence of sums of maximal monotone operators under a general qualification condition of the Attouch-Brezis type.
引用
收藏
页码:1937 / 1946
页数:10
相关论文
共 50 条
  • [21] Convergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces
    Zhiqiang Wei
    Guohong Shi
    Journal of Inequalities and Applications, 2012
  • [22] Weak and strong convergence theorems for maximal monotone operators in a Banach space
    Kamimura, S
    Kohsaka, F
    Takahashi, W
    SET-VALUED ANALYSIS, 2004, 12 (04): : 417 - 429
  • [23] Strong Convergence Theorems for Zeros of Bounded Maximal Monotone Nonlinear Operators
    Chidume, C. E.
    Djitte, N.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [24] New strong convergence method for the sum of two maximal monotone operators
    Yekini Shehu
    Qiao-Li Dong
    Lu-Lu Liu
    Jen-Chih Yao
    Optimization and Engineering, 2021, 22 : 2627 - 2653
  • [25] Convergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces
    Wei, Zhiqiang
    Shi, Guohong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [26] Weak and Strong Convergence Theorems for Maximal Monotone Operators in a Banach Space
    Shoji Kamimura
    Fumiaki Kohsaka
    Wataru Takahashi
    Set-Valued Analysis, 2004, 12 : 417 - 429
  • [27] A strong convergence theorem for maximal monotone operators in Banach spaces with applications
    Chidume, C. E.
    De Souza, G. S.
    Romanus, O. M.
    Nnyaba, U., V
    CARPATHIAN JOURNAL OF MATHEMATICS, 2020, 36 (02) : 229 - 240
  • [28] Iterative convergence theorems for maximal monotone operators and relatively nonexpansive mappings
    Li Wei
    Yong-fu Su
    Hai-yun Zhou
    Applied Mathematics-A Journal of Chinese Universities, 2008, 23 : 319 - 325
  • [29] On the convergence of sequence of maximal monotone operators of type (D) in Banach spaces
    S. R. Pattanaik
    D. K. Pradhan
    Positivity, 2019, 23 : 1009 - 1020
  • [30] Maximal monotone operators and maximal monotone functions for equilibrium problems
    Aoyama, Koji
    Kimura, Yasunori
    Takahashi, Wataru
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 395 - 409