Limit cycles of discontinuous piecewise polynomial vector fields

被引:8
|
作者
de Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
Tonon, Durval Jose [3 ]
机构
[1] UNESP, Fac Ciencias, Dept Matemat, Av Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Fed Goias, Inst Math & Stat, Ave Esperanca S-N,Campus Samambaia, BR-74690900 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Limit cycle; Averaging theory; Cyclicity; LINEAR SYSTEMS; BIFURCATION; EXISTENCE; NUMBER;
D O I
10.1016/j.jmaa.2016.11.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the first average function is non-zero we provide an upper bound for the maximum number of limit cycles bifurcating from the periodic solutions of the center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside a class of discontinuous piecewise polynomial vector fields of degree n with k pieces. The positive integers m, n and k are arbitrary. The main tool used for proving our results is the averaging theory for discontinuous piecewise vector fields. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 50 条
  • [41] The number of limit cycles for regularized piecewise polynomial systems is unbounded
    Huzak, R.
    Kristiansen, K. Uldall
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 342 : 34 - 62
  • [42] On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems\ast
    Gasull, Armengol
    Rondon, Gabriel
    da Silva, Paulo Ricardo
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (03): : 2593 - 2622
  • [43] LIMIT CYCLES FOR DISCONTINUOUS GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL EQUATIONS
    Llibre, Jaume
    Mereu, Ana Cristina
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [44] On the Number of Limit Cycles of Discontinuous Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Ji, Zhicheng
    Wang, Yan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [45] Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems
    Mereu, Ana C.
    Oliveira, Regilene
    Rodrigues, Camila A. B.
    NONLINEAR DYNAMICS, 2018, 93 (04) : 2201 - 2212
  • [46] Limit Cycles in the Discontinuous Planar Piecewise Linear Systems with Three Zones
    Li, Zhengkang
    Liu, Xingbo
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [47] Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems
    Ana C. Mereu
    Regilene Oliveira
    Camila A. B. Rodrigues
    Nonlinear Dynamics, 2018, 93 : 2201 - 2212
  • [48] Limit Cycles in the Discontinuous Planar Piecewise Linear Systems with Three Zones
    Zhengkang Li
    Xingbo Liu
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [49] Limit cycles of three-dimensional polynomial vector
    Bobienski, M
    Zoladek, H
    NONLINEARITY, 2005, 18 (01) : 175 - 209
  • [50] LIMIT-CYCLES OF POLYNOMIAL VECTOR-FIELDS WITH NONDEGENERATE SINGULAR POINTS ON THE REAL PLANE
    ILYASHENKO, YS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (03) : 199 - 209