ASSOCIATED PRIMES OVER ORE EXTENSION RINGS

被引:31
|
作者
Annin, Scott [1 ]
机构
[1] Calif State Univ Fullerton, Dept Math, 800 N State Coll Blvd, Fullerton, CA 92831 USA
关键词
Associated prime; prime module; (sigma; delta)-compatible module; ore extension; annihilator-compliant polynomial;
D O I
10.1142/S0219498804000782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of the prime ideals in Ore extension rings R[x, sigma, delta] has attracted a lot of attention in recent years and has proven to be a challenging undertaking ([5], [7], [12], et al.). The present article makes a contribution to this study for the associated prime ideals. More precisely, we aim to describe how the associated primes of an R-module M-R behave under passage to the polynomial module M[x] over an Ore extension R[x, sigma, delta]. If we impose natural sigma-compatibility and delta-compatibility assumptions on the module M-R (see Sec. 2 below), we can describe all associated primes of the R[x, sigma, delta]-module M[x] in terms of the associated primes of M-R in a very straightforward way. This result generalizes the author's recent work [1] on skew polynomial rings.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [31] Finiteness of associated primes of extension and torsion functors
    Merighe, L. C.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 914 - 926
  • [32] Weak Annihilator over Extension Rings
    Ouyang, Lunqun
    Birkenmeier, Gary F.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) : 345 - 357
  • [33] Transparent Ore Extensions over sigma(*)-rings
    Bhat, Vijay Kumar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 4 (03): : 221 - 229
  • [34] Ore Extensions over Total Valuation Rings
    Hidetoshi Marubayashi
    Algebras and Representation Theory, 2010, 13 : 607 - 622
  • [35] Ore Extensions over (sigma, delta)-Rings
    Abrol, M.
    Bhat, V. K.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 8 (04): : 462 - 468
  • [36] Ore Extensions over Total Valuation Rings
    Marubayashi, Hidetoshi
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (05) : 607 - 622
  • [37] Goldie conditions for ore extensions over semiprime rings
    Leroy, A
    Matczuk, J
    ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (05) : 679 - 688
  • [38] Goldie Conditions for Ore Extensions over Semiprime Rings
    André Leroy
    Jerzy Matczuk
    Algebras and Representation Theory, 2005, 8 : 679 - 688
  • [39] Ore Extensions Over Right Strongly Hopfian Rings
    Ouyang Lunqun
    Liu Jinwang
    Xiang Yueming
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 805 - 819
  • [40] Ore Extensions over Weak sigma-rigid Rings and sigma(*)-rings
    Bhat, V. K.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (04): : 695 - 703