ASSOCIATED PRIMES OVER ORE EXTENSION RINGS

被引:31
|
作者
Annin, Scott [1 ]
机构
[1] Calif State Univ Fullerton, Dept Math, 800 N State Coll Blvd, Fullerton, CA 92831 USA
关键词
Associated prime; prime module; (sigma; delta)-compatible module; ore extension; annihilator-compliant polynomial;
D O I
10.1142/S0219498804000782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of the prime ideals in Ore extension rings R[x, sigma, delta] has attracted a lot of attention in recent years and has proven to be a challenging undertaking ([5], [7], [12], et al.). The present article makes a contribution to this study for the associated prime ideals. More precisely, we aim to describe how the associated primes of an R-module M-R behave under passage to the polynomial module M[x] over an Ore extension R[x, sigma, delta]. If we impose natural sigma-compatibility and delta-compatibility assumptions on the module M-R (see Sec. 2 below), we can describe all associated primes of the R[x, sigma, delta]-module M[x] in terms of the associated primes of M-R in a very straightforward way. This result generalizes the author's recent work [1] on skew polynomial rings.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [1] Σ-Associated Primes over Extension Rings
    Lunqun OUYANG
    Jinwang LIU
    Yueming XIANG
    Journal of Mathematical Research with Applications, 2015, 35 (05) : 505 - 520
  • [2] Associated primes over Ore extensions
    Nordstrom, H
    JOURNAL OF ALGEBRA, 2005, 286 (01) : 69 - 75
  • [3] Associated primes over skew polynomial rings
    Annin, S
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (05) : 2511 - 2528
  • [4] Ore Extension over Generalized Asano Prime Rings
    Suwastika, E.
    Muchtadi-Alamsyah, I.
    Garminia, H.
    Irawati
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (04): : 125 - 130
  • [5] WEAK ASSOCIATED PRIMES OVER DIFFERENTIAL POLYNOMIAL RINGS
    Ouyang, Lunqun
    Liu, Jinwang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (05) : 1583 - 1600
  • [6] Ore extension rings over rings satisfy the weak Beachy–Blair condition
    Abd-Elmalk Hanan
    Salem Refaat
    A. Farahat Mohamed
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [7] ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES OVER REGULAR RINGS
    Puthenpurakal, Tony J.
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (01) : 233 - 255
  • [8] Ore extension rings over rings satisfy the weak Beachy-Blair condition
    Hanan, Abd-Elmalk
    Refaat, Salem
    Mohamed, A. Farahat
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [9] Computing minimal associated primes in polynomial rings over the integers
    Jambor, Sebastian
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (10) : 1098 - 1104
  • [10] ASSOCIATED PRIMES AND PRIMAL DECOMPOSITION OF MODULES OVER COMMUTATIVE RINGS
    Khojali, Ahmad
    Naghipour, Reza
    COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 191 - 202