Efficient robust nonparametric estimation in a semimartingale regression model

被引:13
|
作者
Konev, Victor [1 ]
Pergamenshchikov, Serguei [2 ,3 ]
机构
[1] Tomsk State Univ, Dept Appl Math & Cybernet, Tomsk 634050, Russia
[2] Univ Rouen, Lab Math Raphael Salem, F-76801 St Etienne Du Rauvray, France
[3] Tomsk State Univ, Dept Math & Mech, Tomsk 634041, Russia
关键词
Non-asymptotic estimation; Robust risk; Model selection; Sharp oracle inequality; Asymptotic efficiency; SELECTION;
D O I
10.1214/12-AIHP488
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper considers the problem of robust estimating a periodic function in a continuous time regression model with the dependent disturbances given by a general square integrable semimartingale with an unknown distribution. An example of such a noise is a non-Gaussian Ornstein-Uhlenbeck process with jumps (see (J. R. Stat. Soc. Ser B Stat. Methodol. 63 (2001) 167-241), (Ann. Appl. Probab. 18 (2008) 879-908)). An adaptive model selection procedure, based on the weighted least square estimates, is proposed. Under general moment conditions on the noise distribution, sharp non-asymptotic oracle inequalities for the robust risks have been derived and the robust efficiency of the model selection procedure has been shown. It is established that, in the case of the non-Gaussian Ornstein-Uhlenbeck noise, the sharp lower bound for the robust quadratic risk is determined by the limit value of the noise intensity at high frequencies. An example with a martinagale noise exhibits that the risk convergence rate becomes worse if the noise intensity is unbounded.
引用
收藏
页码:1217 / 1244
页数:28
相关论文
共 50 条
  • [21] ROBUST NONPARAMETRIC REGRESSION WITH SIMULTANEOUS SCALE CURVE ESTIMATION
    HARDLE, W
    TSYBAKOV, AB
    ANNALS OF STATISTICS, 1988, 16 (01): : 120 - 135
  • [22] Multiply robust estimation in nonparametric regression with missing data
    Sun, Yilun
    Wang, Lu
    Han, Peisong
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (01) : 73 - 92
  • [23] ASYMPTOTIC EQUIVALENCE AND ADAPTIVE ESTIMATION FOR ROBUST NONPARAMETRIC REGRESSION
    Cai, T. Tony
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2009, 37 (6A): : 3204 - 3235
  • [24] Nonparametric Estimation using Regression Quantiles in a Regression Model
    Han, Sang Moon
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (05) : 793 - 802
  • [25] IMPROVED MODEL SELECTION METHOD FOR AN ADAPTIVE ESTIMATION IN SEMIMARTINGALE REGRESSION MODELS
    Pchelintsev, E. A.
    Pergamenshchikov, S. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2019, (58): : 14 - 31
  • [26] Robust model selection for a semimartingale continuous time regression from discrete data
    Konev, Victor
    Pergamenchtchikov, Serguei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (01) : 294 - 326
  • [27] ASYMPTOTICALLY EFFICIENT NONPARAMETRIC ESTIMATION OF REGRESSION AND SCALE PARAMETERS
    HENSLER, GL
    COMMUNICATIONS IN STATISTICS, 1975, 4 (09): : 821 - 837
  • [28] Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression
    Galtchouk, Leonid
    Pergamenshchikov, Sergey
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2009, 38 (04) : 305 - 322
  • [29] Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression
    Leonid Galtchouk
    Sergey Pergamenshchikov
    Journal of the Korean Statistical Society, 2009, 38 : 305 - 322
  • [30] Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity
    Linton, Oliver
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (02) : 608 - 631