In this paper, we investigate the functoriality properties of map-graded Hochschild complexes. We show that the category Map of map-graded categories is naturally a stack over the category of small categories endowed with a certain Grothendieck topology of 3-covers. For a related topology of infinity-covers on the Cartesian morphisms in Map, we prove that taking map-graded Hochschild complexes defines a sheaf. From the functoriality related to "injections" between map-graded categories, we obtain Hochschild complexes "with support". We revisit Keller's arrow category argument from this perspective, and introduce and investigate a general Grothendieck construction which encompasses both the map-graded categories associated to presheaves of algebras and certain generalized arrow categories, which together constitute a pair of complementary tools for deconstructing Hochschild complexes.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Guccione, JA
Guccione, JJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina