Asymptotically Optimal Design of Piecewise Cylindrical Robots using Motion Planning

被引:0
|
作者
Baykal, Cenk [1 ,3 ]
Alterovitz, Ron [2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
[3] Univ N Carolina, Chapel Hill, NC 27515 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
OPTIMIZATION; TASK;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In highly constrained settings, e.g., a tentacle-like medical robot maneuvering through narrow cavities in the body for minimally invasive surgery, it may be difficult or impossible for a robot with a generic kinematic design to reach all desirable targets while avoiding obstacles. We introduce a design optimization method to compute kinematic design parameters that enable a single robot to reach as many desirable goal regions as possible while avoiding obstacles in an environment. We focus on the kinematic design of piecewise cylindrical robots, robotic manipulators whose shape can be modeled via cylindrical components. Our method appropriately integrates sampling-based motion planning in configuration space into stochastic optimization in design space so that, over time, our evaluation of a design's ability to reach goals increases in accuracy and our selected designs approach global optimality. We prove the asymptotic optimality of our method and demonstrate performance in simulation for (i) a serial manipulator and (ii) a concentric tube robot, a tentacle-like medical robot that can bend around anatomical obstacles to safely reach clinically-relevant goal regions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Kinodynamic Motion Planning for Mobile Robots Using Splines
    Lau, Boris
    Sprunk, Christoph
    Burgard, Wolfram
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 2427 - 2433
  • [42] RECONFIGURATION FOR MODULAR ROBOTS USING KINODYNAMIC MOTION PLANNING
    Sucan, Loan A.
    Kruse, Jonathan F.
    Yim, Mark
    Kavraki, Lydia E.
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2008, PTS A AND B, 2009, : 237 - +
  • [43] Motion Planning for Industrial Robots using Reinforcement Learning
    Meyes, Richard
    Tercan, Hasan
    Roggendorf, Simon
    Thiele, Thomas
    Buescher, Christian
    Obdenbusch, Markus
    Brecher, Christian
    Jeschke, Sabina
    Meisen, Tobias
    MANUFACTURING SYSTEMS 4.0, 2017, 63 : 107 - 112
  • [44] Motion planning of walking robots using ordinal optimization
    Chen, CH
    Kumar, V
    Luo, YC
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 1998, 5 (02) : 22 - 32
  • [45] Motion Planning on Mobile Robots Using Differential Flatness
    Veslin, E. Y.
    Slama, J.
    Dutra, M. S.
    Lengerke, O.
    IEEE LATIN AMERICA TRANSACTIONS, 2011, 9 (07) : 1006 - 1011
  • [46] Asymptotically near-optimal RRT for fast, high-quality, motion planning
    Salzman, Oren
    Halperin, Dan
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 4680 - 4685
  • [47] Efficient and Asymptotically Optimal Kinodynamic Motion Planning via Dominance-Informed Regions
    Littlefield, Zakary
    Bekris, Kostas E.
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 7410 - 7415
  • [48] Asymptotically Near-Optimal RRT for Fast, High-Quality Motion Planning
    Salzman, Oren
    Halperin, Dan
    IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (03) : 473 - 483
  • [49] Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning
    Ichnowski, Jeffrey
    Prins, Jan F.
    Alterovitz, Ron
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5804 - 5810
  • [50] dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning
    Rahul Shome
    Kiril Solovey
    Andrew Dobson
    Dan Halperin
    Kostas E. Bekris
    Autonomous Robots, 2020, 44 : 443 - 467