RANDOM SURVIVAL FORESTS

被引:1807
|
作者
Ishwaran, Hemant [1 ]
Kogalur, Udaya B. [2 ]
Blackstone, Eugene H. [3 ]
Lauer, Michael S. [4 ]
机构
[1] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44195 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Cleveland Clin, Dept Thorac & Cardiovasc Surg, Cleveland, OH 44195 USA
[4] NHLBI, Div Prevent & Populat Sci, Rockledge Ctr 2, Bethesda, MD 20892 USA
来源
ANNALS OF APPLIED STATISTICS | 2008年 / 2卷 / 03期
基金
美国国家卫生研究院;
关键词
Conservation of events; cumulative hazard function; ensemble; out-of-bag; prediction error; survival tree;
D O I
10.1214/08-AOAS169
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortality that can be used as a predicted outcome. Several illustrative examples are given, including a case study of the prognostic implications of body mass for individuals with coronary artery disease. Computations for all examples were implemented using the freely available R-software package. randomSurvivalForest.
引用
收藏
页码:841 / 860
页数:20
相关论文
共 50 条
  • [41] Unsupervised random forests
    Mantero, Alejandro
    Ishwaran, Hemant
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 144 - 167
  • [42] Extremal Random Forests
    Gnecco, Nicola
    Terefe, Edossa Merga
    Engelke, Sebastian
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 3059 - 3072
  • [43] Enriched random forests
    Amaratunga, Dhammika
    Cabrera, Javier
    Lee, Yung-Seop
    BIOINFORMATICS, 2008, 24 (18) : 2010 - 2014
  • [44] Joints in Random Forests
    Correia, Alvaro H. C.
    Peharz, Robert
    de Campos, Cassio
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [45] Random Forests with R
    Maindonald, John H.
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 422 - 423
  • [46] Evidential Random Forests
    Hoarau, Arthur
    Martin, Arnaud
    Dubois, Jean-Christophe
    Le Gall, Yolande
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [47] GENERALIZED RANDOM FORESTS
    Athey, Susan
    Tibshirani, Julie
    Wager, Stefan
    ANNALS OF STATISTICS, 2019, 47 (02): : 1148 - 1178
  • [48] RANDOM RECURSIVE FORESTS
    BALINSKA, KT
    QUINTAS, LV
    SZYMANSKI, J
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (01) : 3 - 12
  • [49] Calibrating Random Forests
    Bostrom, Henrik
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2008, : 121 - 126
  • [50] Critical random forests
    Martin, James B.
    Yeo, Dominic
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 913 - 960