Ionic Rectification through the Formation of Complexes or Precipitation in Carbon Nanotube Membranes

被引:0
|
作者
Patel, Bhavin [1 ]
Patel, Mayur [1 ]
Bassett, Matthew [1 ]
Landge, Shainaz [1 ]
Huang, Xuezhen [2 ]
Jiang, Hongrui [2 ]
Wu, Ji [1 ]
机构
[1] Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA
[2] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
WATER; FLOW; LEAD; FABRICATION; NANOPORES; DNA;
D O I
10.1246/cl.130500
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanotube membranes were fabricated using arrays of millimeter-long multiwalled carbon nanotubes (MWCNTs) with an inner diameter of about 8 nm through a low-cost cast polishing method. The fabricated carbon nanotube membranes demonstrated a unique ionic rectification phenomenon through two fundamentally different mechanisms: a) the formation of metal ion complexes and b) the precipitation of insoluble lead molybdate inside the carbon nanotubes. These discoveries could be applied to detecting the presence of toxic metal ions in contaminated water resources through a relatively simple approach.
引用
收藏
页码:1173 / 1175
页数:3
相关论文
共 50 条
  • [21] Formation of hollow fiber membranes doped with multiwalled carbon nanotube dispersions
    Plisko, T. V.
    Bildyukevich, A. V.
    Volkov, V. V.
    Osipov, N. N.
    PETROLEUM CHEMISTRY, 2015, 55 (04) : 318 - 332
  • [22] Formation of hollow fiber membranes doped with multiwalled carbon nanotube dispersions
    T. V. Plisko
    A. V. Bildyukevich
    V. V. Volkov
    N. N. Osipov
    Petroleum Chemistry, 2015, 55 (4) : 318 - 332
  • [23] Formation of macroscopically ordered carbon nanotube membranes by self-assembly
    Shimoda, H
    Fleming, L
    Horton, K
    Zhou, O
    PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 135 - 136
  • [24] Ionic Transport through 1.5 NM Diameter Carbon Nanotube Porins
    Yao, Yun-Chiao
    Henley, Robert
    Tunuguntla, Ramya
    Wanunu, Meni
    Noy, Aleksandr
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 182A - 183A
  • [25] DNA translocating through a carbon nanotube can increase ionic current
    Park, Jae Hyun
    He, Jin
    Gyarfas, Brett
    Lindsay, Stuart
    Krstic, Predrag S.
    NANOTECHNOLOGY, 2012, 23 (45)
  • [26] Highly efficient electroosmotic flow through functionalized carbon nanotube membranes
    Wu, Ji
    Gerstandt, Karen
    Majumder, Mainak
    Zhan, Xin
    Hinds, Bruce J.
    NANOSCALE, 2011, 3 (08) : 3321 - 3328
  • [27] Computational studies of molecular diffusion through carbon nanotube based membranes
    Sinnott, SB
    Mao, ZA
    Lee, KH
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2002, 3 (05): : 575 - 587
  • [28] Influences of interfacial resistances on gas transport through carbon nanotube membranes
    Newsome, David A.
    Sholl, David S.
    NANO LETTERS, 2006, 6 (09) : 2150 - 2153
  • [29] OBSERVING FLUID FLOW THROUGH CARBON NANOTUBE ARRAYS AND NANOPORUS MEMBRANES
    Jensen, Anna
    Schrlau, Michael G.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 7, 2018,
  • [30] Actuator properties of the complexes composed by carbon nanotube and ionic liquid: The effects of additives
    Sugino, Takushi
    Kiyohara, Kenji
    Takeuchi, Ichiroh
    Mukai, Ken
    Asaka, Kinji
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 141 (01): : 179 - 186