Approximation theorems for localized szasz-Mirakjan operators

被引:5
|
作者
Xie, Linsen [1 ]
Xie, Tingfan [2 ]
机构
[1] Lishui Univ, Dept Math, Lishui 323000, Zhejiang, Peoples R China
[2] China Jiliang Univ, Dept Math, Hangzhou 310000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
localization; Szasz-Mirakjan operators; convergence; approximation order;
D O I
10.1016/j.jat.2007.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we investigate the convergence and the approximation order of the localized Szasz-Mirakjan operators, and obtain some new results to improve the results due to Omey [Note on operators of Szasz-Mirakjan type, J. Approx. Theory 47 (1986) 246-254]. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [31] Generalized Szasz-Mirakjan type operators via q-calculus and approximation properties
    Ahasan, Mohd
    Mursaleen, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 371
  • [32] THE VORONOVSKAJA TYPE THEOREM FOR AN EXTENSION OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu
    Barbosu, Dan
    Miclaus, Dan
    DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 107 - 115
  • [33] On a Kantorovich Variant of (p,q)-Szasz-Mirakjan Operators
    Mursaleen, M.
    Alotaibi, Abdullah
    Ansari, Khursheed J.
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [34] Dunkl analogue of Szasz-Mirakjan operators of blending type
    Deshwal, Sheetal
    Agrawal, P. N.
    Araci, Serkan
    OPEN MATHEMATICS, 2018, 16 : 1344 - 1356
  • [35] Approximation byModified Complex Szasz-Mirakjan Ope-rators
    Ispir, N.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2013, 3 (02): : 95 - 107
  • [36] THE VORONOVSKAJA TYPE THEOREM FOR A GENERAL CLASS OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu T.
    Miclaus, Dan
    Barbosu, Dan
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 219 - 231
  • [37] Approximation on a new class of Szasz-Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties
    Mishra, Vishnu Narayan
    Yadav, Rishikesh
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 245 - 273
  • [38] Quantitative Global Estimates for Generalized Double Szasz-Mirakjan Operators
    Ozarslan, Mehmet Ali
    Aktuglu, Huseyin
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [39] Higher order Kantorovich-type Szasz-Mirakjan operators
    Sabancigil, Pembe
    Kara, Mustafa
    Mahmudov, Nazim, I
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [40] Strong converse inequality for linear combinations of Szasz-Mirakjan operators
    Xie, Linsen
    Wang, Shuli
    JOURNAL OF APPROXIMATION THEORY, 2022, 273