On the weak convergence for solving semistrictly quasi-monotone variational inequality problems

被引:4
|
作者
Chang, S. S. [1 ]
Salahuddin [2 ]
Wang, L. [3 ]
Liu, M. [4 ]
机构
[1] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[2] Jazan Univ, Dept Math, Jazan, Saudi Arabia
[3] Yunnan Univ Finance & Econ, Kunming, Yunnan, Peoples R China
[4] Yibin Univ, Dept Math, Yibin, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequality problems; Extragradient method; Semistrict quasi-monotonicity; Weak convergence; EXTRAGRADIENT METHOD;
D O I
10.1186/s13660-019-2032-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the approximation problem of solutions for the semistrictly quasi-monotone variational inequalities in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the algorithm for solving the semistrictly quasi-monotone variational inequalities converges weakly to a solution.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the weak convergence for solving semistrictly quasi-monotone variational inequality problems
    S. S. Chang
    L. Salahuddin
    M. Wang
    Journal of Inequalities and Applications, 2019
  • [2] STRONG CONVERGENCE THEOREM FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS
    Li, Xiao-Huan
    Dong, Qiao-Li
    Journal of Applied and Numerical Optimization, 2023, 5 (03): : 321 - 333
  • [3] On solving variational inequality problems involving quasi-monotone operators via modified Tseng's extragradient methods with convergence analysis
    Wairojjana, Nopparat
    Pakkaranang, Nuttapol
    Noinakorn, Supansa
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 27 (01): : 42 - 58
  • [4] QUASI-VARIATIONAL INEQUALITY PROBLEMS OVER PRODUCT SETS WITH QUASI-MONOTONE OPERATORS
    Aussel, D.
    Van, K. Cao
    Salas, D.
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1558 - 1577
  • [5] STRONG CONVERGENCE ANALYSIS FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Owolabi, A. O. E.
    Mewomo, O. T.
    Yao, J. C.
    Qin, X.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2023, 2023
  • [6] STRONG CONVERGENCE ANALYSIS FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Owolabi A.O.E.
    Mewomo O.T.
    Yao J.C.
    Qin X.
    Journal of Nonlinear Functional Analysis, 2023, 2023 (01):
  • [7] New approximation methods for solving quasi-monotone variational inequalities
    Djafari-Rouhani, Behzad
    Mohebbi, Vahid
    OPTIMIZATION, 2024,
  • [8] Modified inertial viscosity extrapolation method for solving quasi-monotone variational inequality and fixed point problems in real Hilbert spaces
    Abuchu, Jacob A.
    Ofem, Austine E.
    Isik, Huseyin
    Ugwunnadi, Godwin C.
    Narain, Ojen K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
  • [9] Modified inertial viscosity extrapolation method for solving quasi-monotone variational inequality and fixed point problems in real Hilbert spaces
    Jacob A. Abuchu
    Austine E. Ofem
    Hüseyin Işık
    Godwin C. Ugwunnadi
    Ojen K. Narain
    Journal of Inequalities and Applications, 2024
  • [10] Weak convergence theorem for variational inequality problems with monotone mapping in Hilbert space
    Tian, Ming
    Jiang, Bing-Nan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,