An Upper Bound of Singleton Type for Componentwise Products of Linear Codes

被引:17
|
作者
Randriambololona, Hugues [1 ,2 ]
机构
[1] Ecole Natl Super Telecommun Telecom ParisTech, F-75634 Paris 13, France
[2] LTCI CNRS UMR 5141, F-75634 Paris 13, France
关键词
Componentwise product; linear code; upper bound;
D O I
10.1109/TIT.2013.2281145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give an upper bound that relates the dimensions of some given number of linear codes, with the minimum distance of their componentwise product. A typical result is as follows: given t linear codes C-i of parameters [n, k(i)](q) with full support, one can find codewords c(i) epsilon C-i such that 1 <= w(c(1) * ... * c(t)) <= max(t = 1, n + t - (k(1) + ... + k(t))).
引用
收藏
页码:7936 / 7939
页数:4
相关论文
共 50 条
  • [21] Upper bound on quantum stabilizer codes
    Li, Zhuo
    Xing, Li-Juan
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [22] An Upper Bound on Broadcast Subspace Codes
    Pang, Yimin
    Honold, Thomas
    2011 6TH INTERNATIONAL ICST CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA (CHINACOM), 2011, : 1155 - 1158
  • [23] On the linear programming bound for linear Lee codes
    Astola, Helena
    Tabus, Ioan
    SPRINGERPLUS, 2016, 5 : 1 - 13
  • [24] Improved Singleton Bound on Insertion-Deletion Codes and Optimal Constructions
    Chen, Bocong
    Zhang, Guanghui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3028 - 3033
  • [25] An Improved Bound and Singleton-Optimal Constructions of Fractional Repetition Codes
    Zhu, Bing
    Shum, Kenneth W.
    Wang, Weiping
    Wang, Jianxin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 749 - 758
  • [26] List-decoding of Subspace Codes and Rank-Metric Codes up to Singleton Bound
    Mahdavifar, Hessam
    Vardy, Alexander
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [27] Optimal b-symbol constacyclic codes with respect to the Singleton bound
    Dinh, Hai Q.
    Wang, Xiaoqiang
    Sirisrisakulchai, Jirakom
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (08)
  • [28] A WEIGHT DISTRIBUTION BOUND FOR LINEAR CODES
    LEVY, JE
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) : 487 - +
  • [29] A symmetric Roos bound for linear codes
    Duursma, Iwan A.
    Pellikaan, Ruud
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1677 - 1688
  • [30] UPPER BOUND FOR LINEAR ARBORICITY
    KAINEN, PC
    APPLIED MATHEMATICS LETTERS, 1991, 4 (04) : 53 - 55