A Rate-Distortion Approach to Caching

被引:15
|
作者
Timo, Roy [1 ]
Bidokhti, Shirin Saeedi [2 ,3 ]
Wigger, Michele [4 ]
Geiger, Bernhard C. [5 ,6 ]
机构
[1] Ericsson Res Torshamnsgatan, S-23164 Stockholm 80, Sweden
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[4] Telecom ParisTech, Commun & Elect Dept, F-75634 Paris, France
[5] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[6] Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria
基金
奥地利科学基金会; 瑞士国家科学基金会;
关键词
Coded caching; rate-distortion; common information; COMMON INFORMATION;
D O I
10.1109/TIT.2017.2768058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a lossy single-user caching problem with correlated sources. We first describe the fundamental interplay between the source correlations, the capacity of the user's cache, the user's reconstruction distortion requirements, and the final delivery-phase (compression) rate. We then illustrate this interplay using a multivariate Gaussian source example and a binary symmetric source example. To fully explore the effect of the user's distortion requirements, we formulate the caching problem using f-separable distortion functions recently introduce by Shkel and Verdu. The class of f-separable distortion functions includes separable distortion functions as a special case, and our analysis covers both the expected- and excess-distortion settings in detail. We also determine what "common information" should be placed in the cache, and what information should be transmitted during the delivery phase. To this end, two new common-information measures are introduced for caching, and their relationship to the common-information measures of Wyner, Gacs, and Korner is discussed in detail.
引用
收藏
页码:1957 / 1976
页数:20
相关论文
共 50 条
  • [31] Rate-distortion optimization for the SPIHT encoder
    Lin, KK
    Gray, RM
    DCC 2001: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2001, : 123 - 132
  • [32] Rate-Distortion in Image Coding for Machines
    Harell, Alon
    De Andrade, Anderson
    Bajic, Ivan, V
    2022 PICTURE CODING SYMPOSIUM (PCS), 2022, : 199 - 203
  • [33] Rate-distortion optimization for: Video compression
    Communication Core Research, PictureTel Corporation, Andover, MA, United States
    不详
    IEEE Signal Process Mag, 6 (74-90):
  • [34] On the rate-distortion region for multiple descriptions
    Fu, FW
    Yeung, RW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 2012 - 2021
  • [35] Rate-distortion approach to databases: Storage and content-based retrieval
    Tuncel, E
    Koulgi, P
    Rose, K
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 348 - 348
  • [36] Rate-Distortion Approach to Bit Allocation in Lossy Image Set Compression
    Lerner, Camara
    Cheng, Howard
    21ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2014), 2014, : 227 - 230
  • [37] Video Compression With Rate-Distortion Autoencoders
    Habibian, Amirhossein
    van Rozendaal, Ties
    Tomczak, Jakub M.
    Cohen, Taco S.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7032 - 7041
  • [38] Network Control: A Rate-Distortion Perspective
    Jose, Jubin
    Vishwanath, Sriram
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [39] Rate-Distortion Dimension of Stochastic Processes
    Rezagah, Farideh Ebrahim
    Jalali, Shirin
    Erkip, Elza
    Poor, H. Vincent
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2079 - 2083
  • [40] Modeling Generalized Rate-Distortion Functions
    Duanmu, Zhengfang
    Liu, Wentao
    Li, Zhuoran
    Wang, Zhou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7331 - 7344