Text to Image Synthesis Using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks

被引:1
|
作者
Tibebu, Haileleol [1 ]
Malik, Aadin [1 ]
De Silva, Varuna [1 ]
机构
[1] Univ Loughborough, Inst Digital Technol, Loughborough, Leics, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Text to image synthesis; Conditional VAE; Conditional GAN; Constrained image synthesis; Stacked network; Super-resolution;
D O I
10.1007/978-3-031-10461-9_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthesizing a realistic image from textual description is a major challenge in computer vision. Current text to image synthesis approaches falls short of producing a high-resolution image that represent a text descriptor. Most existing studies rely either on Generative Adversarial Networks (GANs) or Variational Auto Encoders (VAEs). GANs has the capability to produce sharper images but lacks the diversity of outputs, whereas VAEs are good at producing a diverse range of outputs, but the images generated are often blurred. Taking into account the relative advantages of both GANs and VAEs, we proposed a new stacked Conditional VAE (CVAE) and Conditional GAN (CGAN) network architecture for synthesizing images conditioned on a text description. This study uses Conditional VAEs as an initial generator to produce a high-level sketch of the text descriptor. This high-level sketch output from first stage and a text descriptor is used as an input to the conditional GAN network. The second stage GAN produces a 256 x 256 high resolution image. The proposed architecture benefits from a conditioning augmentation and a residual block on the Conditional GAN network to achieve the results. Multiple experiments were conducted using CUB and Oxford-102 dataset and the result of the proposed approach is compared against state-of-the-art techniques such as StackGAN. The experiments illustrate that the proposed method generates a high-resolution image conditioned on text descriptions and yield competitive results based on Inception and Frechet Inception Score using both datasets.
引用
收藏
页码:560 / 580
页数:21
相关论文
共 50 条
  • [21] Dual Projection Generative Adversarial Networks for Conditional Image Generation
    Han, Ligong
    Min, Martin Renqiang
    Stathopoulos, Anastasis
    Tian, Yu
    Gao, Ruijiang
    Kadav, Asim
    Metaxas, Dimitris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14418 - 14427
  • [22] Single Image Haze Removal Using Conditional Wasserstein Generative Adversarial Networks
    Ebenezer, Joshua Peter
    Das, Bijaylaxmi
    Mukhopadhyay, Sudipta
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [23] Transferring Microscopy Image Modalities with Conditional Generative Adversarial Networks
    Han, Liang
    Yin, Zhaozheng
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 851 - 859
  • [24] A Survey of Image Translation Based on Conditional Generative Adversarial Networks
    Tu H.
    Wang W.
    Chen J.
    Li G.
    Wu F.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (01): : 14 - 32
  • [25] Conditional Generative Adversarial Capsule Networks
    Kong R.
    Huang G.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (01): : 94 - 107
  • [26] Conditional Independence Testing using Generative Adversarial Networks
    Bellot, Alexis
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [28] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,
  • [29] Bidirectional Conditional Generative Adversarial Networks
    Jaiswal, Ayush
    AbdAlmageed, Wael
    Wu, Yue
    Natarajan, Premkumar
    COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 : 216 - 232
  • [30] Phase Retrieval Using Conditional Generative Adversarial Networks
    Uelwer, Tobias
    Oberstrass, Alexander
    Harmeling, Stefan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 731 - 738