WLS method for parameter estimation in water distribution networks

被引:62
|
作者
Reddy, PVN [1 ]
Sridharan, K [1 ]
Rao, PV [1 ]
机构
[1] INDIAN INST SCI,DEPT CIVIL ENGN,BANGALORE 560012,KARNATAKA,INDIA
关键词
UNSATURATED FLOW; INVERSE PROBLEM; CALIBRATION; MODELS; EQUATIONS; TRANSPORT;
D O I
10.1061/(ASCE)0733-9496(1996)122:3(157)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 50 条
  • [41] State Estimation of Active Distribution Networks: Comparison Between WLS and Iterated Kalman-Filter Algorithm Integrating PMUs
    Sarri, S.
    Paolone, M.
    Cherkaoui, R.
    Borghetti, A.
    Napolitano, F.
    Nucci, C. A.
    2012 3RD IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT EUROPE), 2012,
  • [42] Water quality parameter estimation in steady-state distribution system
    Munavalli, GR
    Kumar, MSM
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2003, 129 (02): : 124 - 134
  • [43] Water quality parameter estimation in a distribution system under dynamic state
    Munavalli, GR
    Kumar, MSM
    WATER RESEARCH, 2005, 39 (18) : 4287 - 4298
  • [44] Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
    Raphael Costa Carvalho
    Iasmin Louzada Herzog
    Helcio Rangel Barreto Orlande
    Marcelo José Colaço
    Italo Marcio Madeira
    Nirupam Chakraborti
    Computational and Applied Mathematics, 2023, 42
  • [45] Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
    Carvalho, Raphael Costa
    Herzog, Iasmin Louzada
    Barreto Orlande, Helcio Rangel
    Colaco, Marcelo Jose
    Madeira, Italo Marcio
    Chakraborti, Nirupam
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [46] Distributed Parameter Estimation in Networks
    Rad, Kamiar Rahnama
    Tahbaz-Salehi, Alireza
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5050 - 5055
  • [47] An S-System Parameter Estimation Method (SPEM) for Biological Networks
    Yang, Xinyi
    Dent, Jennifer E.
    Nardini, Christine
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (02) : 175 - 187
  • [48] Optimal induction machine parameter estimation method with artificial neural networks
    Sema Nur Ipek
    Murat Taskiran
    Nur Bekiroglu
    Engin Aycicek
    Electrical Engineering, 2024, 106 : 1959 - 1975
  • [49] Parameter estimation of kinetic rates in stochastic reaction networks by the EM method
    Horvath, Andras
    Manini, Daniele
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 713 - 717
  • [50] Optimal induction machine parameter estimation method with artificial neural networks
    Ipek, Sema Nur
    Taskiran, Murat
    Bekiroglu, Nur
    Aycicek, Engin
    ELECTRICAL ENGINEERING, 2024, 106 (02) : 1959 - 1975