Preference-Based Inconsistency Assessment in Multi-Context Systems

被引:14
|
作者
Eiter, Thomas [1 ]
Fink, Michael [1 ]
Weinzierl, Antonius [1 ]
机构
[1] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
关键词
Inconsistency Management; Multi-Context Systems; Hybrid Reasoning Systems; Nonmonotonic Reasoning; Preferences;
D O I
10.1007/978-3-642-15675-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Resolving inconsistency in knowledge-integration systems is a major issue, especially when interlinking heterogeneous, autonomous sources. The latter can be done using a multi-context system, also in presence of non-monotonicity. Recent work considered diagnosis and explanation of inconsistency in such systems in terms of faulty information exchange. To discriminate between different solutions, we consider inconsistency assessment using preference. We present means to a) filter undesired diagnoses b) select the most preferred ones given an arbitrary preference order and c) use CP-nets for efficient selection. Furthermore, we show how to incorporate the assessment into a Multi-Context System by a transformational approach. In a range of settings, the complexity does not increase compared to the basic case and key properties like decentralized information exchange and information hiding are preserved.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [31] Agent specification using multi-context systems
    Parsons, S
    Jennings, NR
    Sabater, J
    Sierra, C
    FOUNDATIONS AND APPLICATIONS OF MULTI-AGENT SYSTEMS, 2002, 2403 : 205 - 226
  • [32] Minimal Change in Evolving Multi-Context Systems
    Goncalves, Ricardo
    Knorr, Matthias
    Leite, Joao
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 : 611 - 623
  • [33] Decomposition of Distributed Nonmonotonic Multi-Context Systems
    Bairakdar, Seif El-Din
    Minh Dao-Tran
    Eiter, Thomas
    Fink, Michael
    Krennwallner, Thomas
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2010, 2010, 6341 : 24 - 37
  • [34] Distributed Evaluation of Nonmonotonic Multi-context Systems
    Dao-Tran, Minh
    Eiter, Thomas
    Fink, Michael
    Krennwallner, Thomas
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2015, 52 : 543 - 600
  • [35] Preference-based inconsistency-tolerant query answering under existential rules
    Calautti, Marco
    Greco, Sergio
    Molinaro, Cristian
    Trubitsyna, Irina
    ARTIFICIAL INTELLIGENCE, 2022, 312
  • [36] Context-aware, preference-based vehicle routing
    Guo, Chenjuan
    Yang, Bin
    Hu, Jilin
    Jensen, Christian S.
    Chen, Lu
    VLDB JOURNAL, 2020, 29 (05): : 1149 - 1170
  • [37] Context-aware, preference-based vehicle routing
    Chenjuan Guo
    Bin Yang
    Jilin Hu
    Christian S. Jensen
    Lu Chen
    The VLDB Journal, 2020, 29 : 1149 - 1170
  • [38] Intrinsic approaches to prioritizing diagnoses in multi-context systems
    Mu, Kedian
    ARTIFICIAL INTELLIGENCE, 2020, 289
  • [39] Engineering executable agents using multi-context systems
    Sabater, J
    Sierra, C
    Parsons, S
    Jennings, NR
    JOURNAL OF LOGIC AND COMPUTATION, 2002, 12 (03) : 413 - 442
  • [40] Relational Information Exchange and Aggregation in Multi-Context Systems
    Fink, Michael
    Ghionna, Lucantonio
    Weinzierl, Antonius
    LOGIC PROGRAMMING AND NONMONOTONIC REASONING, 2011, 6645 : 120 - 133