The Euclidean Algorithm and the Linear Diophantine Equation ax plus by = gcd(a, b)

被引:2
|
作者
Rankin, S. A. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
来源
AMERICAN MATHEMATICAL MONTHLY | 2013年 / 120卷 / 06期
关键词
D O I
10.4169/amer.math.monthly.120.06.562
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that for any positive integers a and b, with d = gcd(a, b), among all integral solutions to the equation ax + by = d, the solution (x(0), y(0)) that is provided by the Euclidean algorithm lies nearest to the origin. In fact, we prove that (x(0), y(0)) lies in the interior of the circle centered at the origin with radius 1/2d root a(2) + b(2).
引用
收藏
页码:562 / 564
页数:3
相关论文
共 50 条
  • [21] ON THE DIOPHANTINE EQUATION AX(2)-BY(2)=C
    GRELAK, A
    GRYTCZUK, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1994, 44 (3-4): : 291 - 299
  • [22] A note on the exponential diophantine equation ax + by = cz
    Le, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (04) : 21 - 23
  • [23] A note on the diophantine equation ax+by=cz
    Terai, N
    Takakuwa, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (09) : 161 - 164
  • [24] A note on the Diophantine equation ax+by=cz
    Cao, ZF
    ACTA ARITHMETICA, 1999, 91 (01) : 85 - 93
  • [25] The linear diophantine-equation ax + by + cz = e in Q(u5)
    Altindis, H.
    Atasoy, M.
    Indian Journal of Pure and Applied Mathematics, 27 (09):
  • [26] Modifying a numerical algorithm for solving the matrix equation X plus AX T B = C
    Vorontsov, Yu. O.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (06) : 677 - 680
  • [27] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [28] THE LINEAR DIOPHANTINE EQUATION
    KERTZNER, S
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (03): : 200 - 203
  • [29] The solution to matrix equation AX plus XT C = B
    Piao, Fengxian
    Zhang, Qingling
    Wang, Zhefeng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (08): : 1056 - 1062
  • [30] Ranks of solutions of the linear matrix equation AX plus YB = C
    Yong Hui Liu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (6-7) : 861 - 872