Unstable dynamical systems: Delays, noise and control

被引:53
|
作者
Milton, J. G. [1 ]
Cabrera, J. L. [2 ]
Ohira, T. [3 ]
机构
[1] Claremont Mckenna Coll, Joint Sci Dept, Claremont, CA 91711 USA
[2] IVIC, Ctr Fis, Caracas 1020A, Venezuela
[3] Sony Comp Sci Labs Inc, Tokyo 1410022, Japan
基金
美国国家科学基金会;
关键词
D O I
10.1209/0295-5075/83/48001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Escape from an unstable fixed point in a time-delayed dynamical system in the presence of additive white noise depends on both the magnitude of the time delay, tau, and the initial function. In particular, the longer the delay the smaller the variance and hence the slower the rate of escape. Numerical simulations demonstrate that the distribution of first passage times is bimodal, the longest first passage times are associated with those initial functions that cause the greatest number of delayed zero crossings, i.e. instances where the deviations of the controlled variable from the fixed point at times t and t - tau have opposite signs. These observations support the utility of control strategies using pulsatile stimuli triggered only when variables exceed certain thresholds. Copyright (C) EPLA, 2008.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Control of unstable processes with time delays via ADRC
    Fu, Caifen
    Tan, Wen
    ISA TRANSACTIONS, 2017, 71 : 530 - 541
  • [42] Stabilizing unstable periodic orbits of dynamical systems using delayed feedback control with periodic gain
    Leonov G.A.
    Moskvin A.V.
    International Journal of Dynamics and Control, 2018, 6 (2) : 601 - 608
  • [43] Detection meeting control: Unstable steady states in high-dimensional nonlinear dynamical systems
    Ma, Huanfei
    Ho, Daniel W. C.
    Lai, Ying-Cheng
    Lin, Wei
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [44] Tracking and controlling unstable steady states of dynamical systems
    Tamaševičius, A. (tamasev@pfi.lt), 1600, Elsevier B.V. (19):
  • [45] The quasideterministic approach in the dynamical characterization of rotating unstable systems
    Jiménez-Aquino, JI
    Romero-Bastida, M
    PHYSICA A, 2001, 292 (1-4): : 153 - 166
  • [46] Dynamical stabilization of an unstable equilibrium in chemical and biological systems
    Malchow, H
    Petrovskii, SV
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (03) : 307 - 319
  • [47] Tracking and controlling unstable steady states of dynamical systems
    Tamaseviciute, Elena
    Mykolaitis, Gytis
    Bumeliene, Skaidra
    Tamasevicius, Arunas
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (03) : 649 - 655
  • [48] Stabilization of unstable periodic orbits of chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 33 - 44
  • [49] Localization and stabilization of unstable solutions of chaotic dynamical systems
    Magnitskii N.A.
    Sidorov S.V.
    Computational Mathematics and Modeling, 2002, 13 (1) : 1 - 28
  • [50] On the search for unstable periodic solutions of nonlinear dynamical systems
    Gusakov, IV
    Rotin, SV
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2001, 16 (02) : 135 - 156