Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy

被引:32
|
作者
Liu, Zhihe [1 ]
Liu, Jie [1 ,2 ]
Wang, Xiaodong [1 ]
Mi, Feixue [1 ]
Wang, Dan [3 ]
Wu, Changfeng [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Biomed Engn, Shenzhen 510855, Guangdong, Peoples R China
[2] Hong Kong Baptist Univ, Dept Biol, Hong Kong 999077, Peoples R China
[3] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
AGGREGATION-INDUCED EMISSION; UP-CONVERSION NANOPARTICLES; GROUND-STATE-DEPLETION; STRUCTURED-ILLUMINATION MICROSCOPY; SEMICONDUCTING POLYMER DOTS; LIVE-CELL; EXPANSION MICROSCOPY; STIMULATED-EMISSION; RECONSTRUCTION MICROSCOPY; LOCALIZATION MICROSCOPY;
D O I
10.1021/acs.bioconjchem.0c00320
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescent microscopy techniques are widely used in biological studies. However, the spatial resolution of fluorescent microscopy is restricted by the optical diffraction limit. In the past two decades, super-resolution imaging techniques with different principles have been invented to visualize biomolecules at nanometer scales. The development of nearly all these techniques is closely related to the advances in fluorescent probes. In particular, the intrinsic properties of fluorescent probes constrain the optimal imaging performance of super-resolution nanoscopy techniques. In this review, we summarized the recent progress in fluorescent probe bioconjugates for super-resolution imaging techniques. Examples of these bioconjugates include the widely used fluorescent proteins (FPs), organic dyes, quantum dots (Qdots), carbon dots (Cdots), upconversion nanoparticles (UCNPs), aggregation induced emission (AIE) nanoparticles, and polymer dots (Pdots). Based on the characteristics of the existing probes and their adaptability in current imaging methods, we provide a perspective for further development of fluorescent probes for super-resolution imaging.
引用
收藏
页码:1857 / 1872
页数:16
相关论文
共 50 条
  • [31] Super-resolution optical fluctuation imaging
    Basak, Samrat
    Chizhik, Alexey
    Gallea, Jose Ignacio
    Gligonov, Ivan
    Gregor, Ingo
    Nevskyi, Oleksii
    Radmacher, Niels
    Tsukanov, Roman
    Enderlein, Joerg
    NATURE PHOTONICS, 2025, 19 (03) : 229 - 237
  • [32] Optical super-resolution microscopy in neurobiology
    Sigrist, Stephan J.
    Sabatini, Bernardo L.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (01) : 86 - 93
  • [33] SIMPLE OPTICAL THEORY OF SUPER-RESOLUTION
    PASK, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (01) : 68 - 70
  • [34] Super-resolution optical imaging: A comparison
    Huszka, Gergely
    Gijs, Martin A. M.
    MICRO AND NANO ENGINEERING, 2019, 2 : 7 - 28
  • [35] Super-Resolution Optical Lithography with DNA
    Kim, Shi Ho
    Liu, Yu
    Hoelzel, Conner
    Zhang, Xin
    Lee, Tae-Hee
    NANO LETTERS, 2019, 19 (09) : 6035 - 6042
  • [36] Super-Resolution Diffusive Optical Imaging
    Bentz, Brian Z.
    Lin, Dergan
    Patel, Justin A.
    Webb, Kevin J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [37] Super-Resolution in Optical Coherence Tomography
    Wang, Qifan
    Zheng, Rencheng
    Achim, Alin
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 850 - 853
  • [38] Super-resolution in optical data storage
    Brand, U
    Hester, G
    Grochmalicki, J
    Pike, R
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 : 794 - 800
  • [39] Super-Resolution Correlating Optical Endoscopy
    Tamm, Oskar
    Tiwari, Vipin
    Gopinath, Shivasubramanian
    Rajeswary, Aravind Simon John Francis
    Singh, Scott Arockia
    Rosen, Joseph
    Anand, Vijayakumar
    IEEE ACCESS, 2024, 12 : 76955 - 76962
  • [40] On-fiber photonic nanojet enables super-resolution in en face optical coherence tomography and scattering nanoscopy
    Vairagi, Kaushal
    Kaur, Jasleen
    Gupta, Pooja
    Enoch, Stefan
    Mondal, Samir K.
    COMMUNICATIONS PHYSICS, 2025, 8 (01):