On group chromatic number of graphs

被引:9
|
作者
Lai, HJ
Li, XW [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
[2] W Virginia Univ, Dept Math, Morgantown, WV 26505 USA
关键词
Positive Integer; Abelian Group; Directed Edge; Chromatic Number; Simple Graph;
D O I
10.1007/s00373-005-0625-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and A an Abelian group. Denote by F(G, A) the set of all functions from E(G) to A. Denote by D an orientation of E(G). For f epsilon F(G,A), an (A,f)-coloring of G under the orientation D is a function c : V(G) bar right arrow A such that for every directed edge uv from u to v, c(u)-c(v) not equal f(uv). G is A-colorable under the orientation D if for any function f is an element of F(G, A), G has an (A, f)-coloring. It is known that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the least positive integer m for which G is A-colorable for any Abelian group A of order >= m, and is denoted by chi(g)(G). In this note we will prove the following results. (1) Let H-1 and H-2 be two subgraphs of G such that V(H-1) boolean AND V(H-2) = 0 and V(H-1) boolean OR V(H-2)=V(G). Then chi(g)(G) <= min{max{chi(g)(H-1), max(v is an element of V(H2)) deg(v,G) + 1}, max{chi(g)(H-2), max(u is an element of V(H1)) deg (u, G) + 1}}. We also show that this bound is best possible. (2) If G is a simple graph without a K-3,K-3-minor, then chi(g)(G) <= 5.
引用
收藏
页码:469 / 474
页数:6
相关论文
共 50 条
  • [11] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583
  • [12] On incompactness for chromatic number of graphs
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 363 - 371
  • [13] Hat chromatic number of graphs
    Bosek, Bartlomiej
    Dudek, Andrzej
    Farnik, Michal
    Grytczuk, Jaroslaw
    Mazur, Przemyslaw
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [14] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296
  • [15] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122
  • [16] On Indicated Chromatic Number of Graphs
    S. Francis Raj
    R. Pandiya Raj
    H. P. Patil
    Graphs and Combinatorics, 2017, 33 : 203 - 219
  • [17] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457
  • [18] The Robust Chromatic Number of Graphs
    Bacso, Gabor
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [19] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [20] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993