A Neural Topic Model Based on Variational Auto-Encoder for Aspect Extraction from Opinion Texts

被引:3
|
作者
Cui, Peng [1 ]
Liu, Yuanchao [1 ]
Liu, Binqquan [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect extraction; Neural topic model; VAE;
D O I
10.1007/978-3-030-32233-5_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect extraction is an important task in ABSA (Aspect Based Sentiment Analysis). To address this task, in this paper we propose a novel variant of neural topic model based on Variational Auto-encoder (VAE), which consists of an aspect encoder, an auxiliary encoder and a hierarchical decoder. The difference from previous neural topic model based approaches is that our proposed model builds latent variable in multiple vector spaces and it is able to learn latent semantic representation in better granularity. Additionally, it also provides a direct and effective solution for unsupervised aspect extraction, thus it is beneficial for low-resource processing. Experimental evaluation conducted on both a Chinese corpus and an English corpus have demonstrated that our model has better capacity of text modeling, and substantially outperforms previous state-of-the-art unsupervised approaches for aspect extraction.
引用
收藏
页码:660 / 671
页数:12
相关论文
共 50 条
  • [41] PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data
    Jin, Xue-Bo
    Gong, Wen-Tao
    Kong, Jian-Lei
    Bai, Yu-Ting
    Su, Ting-Li
    MATHEMATICS, 2022, 10 (04)
  • [42] ANOMALY DETECTION OF LASER-BASED METAL ADDITIVE MANUFACTURING USING NEURAL-VARIATIONAL AUTO-ENCODER
    Rescsanski, Sean
    Yadollahi, Aref
    Khanzadeh, Mojtaba
    Imani, Farhad
    PROCEEDINGS OF ASME 2023 18TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2023, VOL 1, 2023,
  • [43] POTENTIAL OF VARIATIONAL AUTO-ENCODER AS AN ALTERNATIVE TO A WELDING RESIDUAL STRESS PROFILE SAMPLING MODEL
    Oh, Changsik
    Kim, Jin-Gyum
    Kang, Sung-Sik
    Lee, Sangmin
    PROCEEDINGS OF ASME 2023 PRESSURE VESSELS & PIPING CONFERENCE, PVP2023, VOL 5, 2023,
  • [44] An Air Pollutant Prediction Model Based on Auto-Encoder Network
    Qin D.
    Ding Z.
    Jin Y.
    Zhao Q.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (05): : 681 - 687
  • [45] A Deep Learning Method Based on Hybrid Auto-Encoder Model
    Yang, ZhenYu
    Jing, Hui
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 1100 - 1104
  • [46] An Improved Graph Convolutional Neural Network based on Graph Auto-encoder
    Wang, Dongqi
    Du, Tianqi
    Liu, Zhongwu
    Chen, Dongming
    Ren, Tao
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 442 - 446
  • [47] Online course evaluation model based on graph auto-encoder
    Yuan, Wei
    Zhao, Shiyu
    Wang, Li
    Cai, Lijia
    Zhang, Yong
    INTELLIGENT DATA ANALYSIS, 2024, 28 (06) : 1467 - 1489
  • [48] Change Detection Based on Auto-encoder Model for VHR Images
    Xu, Yuan
    Xiang, Shiming
    Huo, Chunlei
    Pan, Chunhong
    MIPPR 2013: PATTERN RECOGNITION AND COMPUTER VISION, 2013, 8919
  • [49] A Coarse-to-fine Model for Fundus Image Segmentation via Variational Auto-Encoder
    Zhang, Feiyan
    Zheng, Yuanjie
    Wu, Jie
    Chen, Zeyuan
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [50] Class-Specific Variational Auto-Encoder for Content-Based Image Retrieval
    Rafiei, Mehdi
    Iosifidis, Alexandros
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,