Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass

被引:273
|
作者
Pasangulapati, Vamsee [1 ]
Ramachandriya, Karthikeyan D. [1 ]
Kumar, Ajay [1 ]
Wilkins, Mark R. [1 ]
Jones, Carol L. [1 ]
Huhnke, Raymond L. [1 ]
机构
[1] Oklahoma State Univ, Dept Biosyst & Agr Eng, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
Thermochemical conversion; Gasification; Biomass; Weight loss; Gas evolution; AIR-STEAM GASIFICATION; THERMAL-DEGRADATION; LIGNOCELLULOSIC BIOMASS; EQUIVALENCE RATIO; DISTILLERS GRAINS; FAST PYROLYSIS; FLUIDIZED-BED; PARTICLE-SIZE; FUELS; COMPONENTS;
D O I
10.1016/j.biortech.2012.03.036
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The objective of this study was to investigate effects of biomass constituents (cellulose, hemicellulose and lignin) on biomass thermal decomposition and gas evolution profiles of four biomass materials. Switchgrass, wheat straw, eastern redcedar and dry distilled grains with solubles (DDGS) were selected as the biomass materials. No significant difference was observed in the weight loss profiles of switchgrass, wheat straw and eastern redcedar even though their cellulose, hemicellulose and lignin contents were considerably different. The weight loss kinetic parameters were also not significantly different except for activation energy of the eastern redcedar. However, biomass composition did significantly affect gas evolution profiles. The higher contents of cellulose and hemicellulose in switchgrass and wheat straw may have resulted in their higher CO and CO2 concentrations as compared to eastern redcedar. On the other hand, higher lignin content in eastern redcedar may have resulted in significantly its high CH4 concentration. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:663 / 669
页数:7
相关论文
共 50 条
  • [21] Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures
    Cao, Wenhan
    Li, Jun
    Marti-Rossello, Teresa
    Zhang, Xiaolei
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (05) : 1303 - 1312
  • [22] Characteristics of tar formation during cellulose, hemicellulose and lignin gasification
    Yu, Haimiao
    Zhang, Ze
    Li, Zeshen
    Chen, Dezhen
    FUEL, 2014, 118 : 250 - 256
  • [23] Influence of Urea Formaldehyde Resin on the Pyrolysis of Biomass Components: Cellulose, Hemicellulose, and Lignin
    Lai, Zongyuan
    Li, Sijin
    Zhang, Yu
    Li, Yushuang
    Mu, Jun
    BIORESOURCES, 2018, 13 (02): : 2218 - 2232
  • [24] Extraction strategies for lignin, cellulose, and hemicellulose to obtain valuable products from biomass
    Wang, Limin
    Li, Guanyan
    Chen, Xiangmeng
    Yang, Yafeng
    Liew, Rock Keey
    Abo-Dief, Hala M.
    Lam, Su Shiung
    Sellami, Rahma
    Peng, Wanxi
    Li, Hanyin
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (06)
  • [25] Separation and Characterization of Biomass Components (Cellulose, Hemicellulose, and Lignin) from Corn Stalk
    Zhang, Yan
    Wang, Huile
    Sun, Xindi
    Wang, Yifan
    Liu, Zhong
    BIORESOURCES, 2021, 16 (04) : 7204 - 7218
  • [26] Formation and emission characteristics of intermediate volatile organic compounds (IVOCs) from the combustion of biomass and their cellulose, hemicellulose, and lignin
    Zhu, Xiaomeng
    Han, Yong
    Feng, Yanli
    Cheng, Penghao
    Peng, Yu
    Wang, Junhan
    Cai, Junjie
    Chen, Yingjun
    ATMOSPHERIC ENVIRONMENT, 2022, 286
  • [27] Study of the Slow Pyrolysis of Lignin, Hemicellulose, and Cellulose and the Effect of Their Interaction in Plant Biomass
    V. M. Zaichenko
    V. A. Lavrenov
    Yu. M. Faleeva
    Solid Fuel Chemistry, 2023, 57 : 428 - 436
  • [28] Study of the Slow Pyrolysis of Lignin, Hemicellulose, and Cellulose and the Effect of Their Interaction in Plant Biomass
    Zaichenko, V. M.
    Lavrenov, V. A.
    Faleeva, Yu. M.
    SOLID FUEL CHEMISTRY, 2023, 57 (06) : 428 - 436
  • [29] The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis
    Burhenne, Luisa
    Messmer, Jonas
    Aicher, Thomas
    Laborie, Marie-Pierre
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 101 : 177 - 184
  • [30] A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics
    Miller, RS
    Bellan, J
    COMBUSTION SCIENCE AND TECHNOLOGY, 1997, 126 (1-6) : 97 - 137