Extensible Hierarchical Multi-Agent Reinforcement-Learning Algorithm in Traffic Signal Control

被引:0
|
作者
Zhao, Pengqian [1 ]
Yuan, Yuyu [1 ]
Guo, Ting [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Key Lab Trustworthy Distributed Comp & Serv,Minist, Beijing 100876, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 24期
关键词
reinforcement learning; multi-agent system; traffic signal control; hierarchical reinforcement learning; LEVEL;
D O I
10.3390/app122412783
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reinforcement-learning (RL) algorithms have made great achievements in many scenarios. However, in large-scale traffic signal control (TSC) scenarios, RL still falls into local optima when controlling multiple signal lights. To solve this problem, we propose a novel goal-based multi-agent hierarchical model (GMHM). Specifically, we divide the traffic environment into several regions. The region contains a virtual manager and several workers who control the traffic lights. The manager assigns goals to each worker by observing the environment, and the worker makes decisions according to the environment state and the goal. For the worker, we adapted the goal-based multi-agent deep deterministic policy gradient (MADDPG) algorithm combined with hierarchical reinforcement learning. In this way, we simplify tasks and allow agents to cooperate more efficiently. We carried out experiments on both grid traffic scenarios and real-world scenarios in the SUMO simulator. The experimental results show the performance advantages of our algorithm compared with state-of-the-art algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] AGRCNet: communicate by attentional graph relations in multi-agent reinforcement learning for traffic signal control
    Ma, Tinghuai
    Peng, Kexing
    Rong, Huan
    Qian, Yurong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 21007 - 21022
  • [32] Engineering A Large-Scale Traffic Signal Control: A Multi-Agent Reinforcement Learning Approach
    Chen, Yue
    Li, Changle
    Yue, Wenwei
    Zhang, Hehe
    Mao, Guoqiang
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [33] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Zhimin Qiao
    Liangjun Ke
    Xiaoqiang Wang
    Applied Intelligence, 2023, 53 : 4483 - 4498
  • [34] GPLight: Grouped Multi-agent Reinforcement Learning for Large-scale Traffic Signal Control
    Liu, Yilin
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    Jin, Lei
    Chen, Bo
    Pan, Rui
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 199 - 207
  • [35] AGRCNet: communicate by attentional graph relations in multi-agent reinforcement learning for traffic signal control
    Tinghuai Ma
    Kexing Peng
    Huan Rong
    Yurong Qian
    Neural Computing and Applications, 2023, 35 : 21007 - 21022
  • [36] Traffic signal priority control based on shared experience multi-agent deep reinforcement learning
    Wang, Zhiwen
    Yang, Kangkang
    Li, Long
    Lu, Yanrong
    Tao, Yufei
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1363 - 1379
  • [37] Multi-Agent Meta-Reinforcement Learning with Coordination and Reward Shaping for Traffic Signal Control
    Du, Xin
    Wang, Jiahai
    Chen, Siyuan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 : 349 - 360
  • [38] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Qiao, Zhimin
    Ke, Liangjun
    Wang, Xiaoqiang
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4483 - 4498
  • [39] Hierarchical Control of Multi-Agent Systems using Online Reinforcement Learning
    Bai, He
    George, Jemin
    Chakrabortty, Aranya
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 340 - 345
  • [40] Multi-agent broad reinforcement learning for intelligent traffic light control
    Zhu, Ruijie
    Li, Lulu
    Wu, Shuning
    Lv, Pei
    Li, Yafei
    Xu, Mingliang
    INFORMATION SCIENCES, 2023, 619 : 509 - 525