We consider a symmetric semilinear boundary value problem having infinitely many solutions. We prove that, if we perturb this problem in a non-symmetric way, then the number of solutions goes to infinity as the perturbation tends to zero. The growth conditions on the nonlinearities do not ensure the smoothness of the associated functional. (C) 1999 Academie des Sciences / Editions scientifiques et medicales Elsevier SAS.
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USA
City Univ London, Dept Math Sci, London EC1V 0HB, EnglandWashington Univ, Dept Phys, St Louis, MO 63130 USA
Bender, Carl M.
论文数: 引用数:
h-index:
机构:
Fring, Andreas
Komijani, Javad
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USAWashington Univ, Dept Phys, St Louis, MO 63130 USA