STATISTICAL DYNAMICS OF LEARNING PROCESSES IN SPIKING NEURAL NETWORKS

被引:0
|
作者
Hyland, David C. [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
来源
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In previous work, the author and Dr. Jer-Nan Juang contributed a new neural net architecture, within the framework of "second generation" neural models. We showed how to implement backpropagation learning in a massively parallel architecture involving only local computations - thereby capturing one of the principal advantages of biological neural nets. Since then, a large body of neural-biological research has given rise to the "third-generation" models, namely spiking neural nets, wherein the brief, sharp pulses (spikes) produced by neurons are explicitly modeled. Information is encoded not in average firing rates, but in the temporal pattern of the spikes. Further, no physiological basis for backpropagation has been found, rather, synaptic plasticity is driven by the timing of spikes. The present paper examines the statistical dynamics of learning processes in spiking neural nets. Equations describing the evolution of synaptic efficacies and the probability distributions of the neural states are derived. Although the system is strongly nonlinear, the typically large number of synapses per neuron (similar to 10,000) permits us to obtain a closed system of equations. As in the earlier work, we see that the learning process in this more realistic setting is dominated by local interactions; thereby preserving massive parallelism. It is hoped that the formulation given here will provide the basis for the rigorous analysis of learning dynamics in very large neural nets (10(10) neurons in the human brain!) for which direct simulation is difficult or impractical.
引用
收藏
页码:363 / 378
页数:16
相关论文
共 50 条
  • [11] Normative learning in spiking neural networks
    Jolivet, Renaud B.
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2024, 59 : 454 - 455
  • [12] Analysis of oscillating processes in spiking neural networks
    Sergey Kashchenko
    Vyacheslav Mayorov
    Natalia Mayorova
    The European Physical Journal Special Topics, 2023, 232 : 509 - 527
  • [13] Analysis of oscillating processes in spiking neural networks
    Kashchenko, Sergey
    Mayorov, Vyacheslav
    Mayorova, Natalia
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (05): : 509 - 527
  • [14] Learning recurrent dynamics in spiking networks
    Kim, Christopher M.
    Chow, Carson C.
    ELIFE, 2018, 7
  • [15] A compound memristive synapse model for statistical learning through STDP in spiking neural networks
    Bill, Johannes
    Legenstein, Robert
    FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [16] Dynamics of spiking map-based neural networks in problems of supervised learning
    Pugavko, Mechislav M.
    Maslennikov, Oleg, V
    Nekorkin, Vladimir, I
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90 (90):
  • [17] Learning spiking neuronal networks with artificial neural networks: neural oscillations
    Zhang, Ruilin
    Wang, Zhongyi
    Wu, Tianyi
    Cai, Yuhang
    Tao, Louis
    Xiao, Zhuo-Cheng
    Li, Yao
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 88 (06)
  • [18] Autonomous Learning Paradigm for Spiking Neural Networks
    Liu, Junxiu
    McDaid, Liam J.
    Harkin, Jim
    Karim, Shvan
    Johnson, Anju P.
    Halliday, David M.
    Tyrrell, Andy M.
    Timmis, Jon
    Millard, Alan G.
    Hilder, James
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 737 - 744
  • [19] Learning long sequences in spiking neural networks
    Stan, Matei-Ioan
    Rhodes, Oliver
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [20] Comparison of learning methods for spiking neural networks
    Kukin K.
    Sboev A.
    Optical Memory and Neural Networks (Information Optics), 2015, 24 (02): : 123 - 129