Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

被引:32
|
作者
Li, Xiang [1 ,2 ]
Wang, Chao [1 ,2 ]
Tan, Jiwei [1 ,2 ]
Zeng, Xiaoyi [1 ,2 ]
Ou, Dan [1 ,2 ]
Zheng, Bo [1 ,2 ]
机构
[1] Alibaba Grp, Hangzhou, Peoples R China
[2] Alibaba Grp, Beijing, Peoples R China
关键词
multimodal learning; adversarial learning; recurrent neural network; attention; representation learning; e-commerce search;
D O I
10.1145/3366423.3380163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
引用
收藏
页码:827 / 836
页数:10
相关论文
共 50 条
  • [41] Hierarchical attention and feature projection for click-through rate prediction
    Zhang, Jinjin
    Zhong, Chengliang
    Fan, Shouxiang
    Mu, Xiaodong
    Ni, Zhen
    APPLIED INTELLIGENCE, 2022, 52 (08) : 8651 - 8663
  • [42] Self-residual Embedding for Click-Through Rate Prediction
    Sun, Jingqin
    Yin, Yunfei
    Huang, Faliang
    Zhou, Mingliang
    Hou, Leong U.
    WEB AND BIG DATA, APWEB-WAIM 2021, PT II, 2021, 12859 : 323 - 337
  • [43] Click-Through Rate Prediction with Multi-Modal Hypergraphs
    He, Li
    Chen, Hongxu
    Wang, Dingxian
    Jameel, Shoaib
    Yu, Philip
    Xu, Guandong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 690 - 699
  • [44] Deep Filter Context Network for Click-Through Rate Prediction
    Yu, Mingting
    Liu, Tingting
    Yin, Jian
    JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH, 2023, 18 (03): : 1446 - 1462
  • [45] Deep Context Interest Network for Click-Through Rate Prediction
    Hou, Xuyang
    Wang, Zhe
    Liu, Qi
    Qu, Tan
    Cheng, Jia
    Lei, Jun
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3948 - 3952
  • [46] AIM: Automatic Interaction Machine for Click-Through Rate Prediction
    Zhu, Chenxu
    Chen, Bo
    Zhang, Weinan
    Lai, Jincai
    Tang, Ruiming
    He, Xiuqiang
    Li, Zhenguo
    Yu, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3389 - 3403
  • [47] Click-through rate prediction in online advertising: A literature review
    Yang, Yanwu
    Zhai, Panyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (02)
  • [48] Similitude Attentive Relation Network for Click-Through Rate Prediction
    Deng, Hangyu
    Wang, Yulong
    Luo, Jia
    Hu, Jinglu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [49] Deep Session Interest Network for Click-Through Rate Prediction
    Feng, Yufei
    Lv, Fuyu
    Shen, Weichen
    Wang, Menghan
    Sun, Fei
    Zhu, Yu
    Yang, Keping
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2301 - 2307
  • [50] Graph relation embedding network for click-through rate prediction
    Yixuan Wu
    Youpeng Hu
    Xin Xiong
    Xunkai Li
    Ronghui Guo
    Shuiguang Deng
    Knowledge and Information Systems, 2022, 64 : 2543 - 2564