Comparative study of n-type AlGaN grown on sapphire by using a superlattice layer and a low-temperature AlN interlayer

被引:16
|
作者
Xi, Y. A.
Chen, K. X.
Mont, F.
Kim, J. K.
Schubert, E. F. [1 ]
Liu, W.
Li, X.
Smart, J. A.
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, 110 8th St, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Future Chips Constellat, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[4] Crystal IS Inc, Green Island, NY 12183 USA
基金
美国国家科学基金会;
关键词
metalorganic vapor phase epitaxy; AlGaN; nitride; light emitting diode;
D O I
10.1016/j.jcrysgro.2006.10.253
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Si-doped Al0.3Ga0.7N grown on (0 0 0 I)-oriented sapphire is optimized by using a superlattice (SL) layer. Atomic force microscopy (AFM), high-resolution X-ray diffraction (HRXRD), secondary ion mass spectrometry (SIMS), and Hall effect measurements show that n-type Al0.3Ga0.7N grown on a SL layer gives high-quality crystalline and electrical properties. A 1.8-mu m-thick crack-free n-type Al0.3Ga0.7N layer is demonstrated with a doping concentration of 3 x 1018CM-3, an excellent mobility of 80 cm(2)/(V s), and an RMS roughness of 0.40 nm. Using the SL layer also results in the absence of hexagonal hillocks on the AlGaN surface, which are indicative of a high defect density. The study of an identical n-type Al0.3Ga0.7N layer grown on a low-temperature AIN interlayer shows a lower carrier concentration, mobility, and crystalline quality. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 62
页数:4
相关论文
共 50 条
  • [31] Microscope Investigation and Electrical Conductivity of Si Doped n-type Al0.45Ga0.55N layer grown on AlGaN/AlN Superlattices
    Jeon, S. R.
    Son, S. J.
    Park, S. -H.
    LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XVIII, 2014, 9003
  • [32] Strain effects on the intersubband transitions in GaN/AlN multiple quantum wells grown by low-temperature metal organic vapor phase epitaxy with AlGaN interlayer
    Sodabanlu, Hassanet
    Yang, Jung-Seung
    Sugiyama, Masakazu
    Shimogaki, Yukihiro
    Nakano, Yoshiaki
    APPLIED PHYSICS LETTERS, 2009, 95 (16)
  • [33] Low-temperature buffer layer effects on the quality of ZnTe epilayers grown on sapphire substrates
    Guo, Qixin
    Nada, Masaki
    Ding, Yaliu
    Tanaka, Tooru
    Nishio, Mitsuhiro
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
  • [34] LOW-TEMPERATURE CONDUCTIVITY OF STRONGLY COMPENSATED N-TYPE INSB
    YAREMENKO, NG
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1975, 9 (05): : 554 - 558
  • [35] Crack control in GaN grown on silicon (111) using In doped low-temperature AlGaN interlayer by metalorganic chemical vapor deposition
    Wu, Jiejun
    Han, Xiuxun
    Li, Jiemin
    Wei, Hongyuan
    Cong, Guangwei
    Liu, Xianglin
    Zhu, Qinsheng
    Wang, Zhanguo
    Jia, Quanjie
    Guo, Liping
    Hu, Tiandou
    Wang, Huanhua
    OPTICAL MATERIALS, 2006, 28 (10) : 1227 - 1231
  • [36] LOW-TEMPERATURE INFRARED-ABSORPTION OF N-TYPE GAP
    GOLDYS, E
    GALTIER, P
    MARTINEZ, G
    GORCZYCA, I
    PHYSICAL REVIEW B, 1987, 36 (18): : 9662 - 9670
  • [37] LOW-TEMPERATURE RECOVERY OF IRRADIATION DEFECTS IN N-TYPE GERMANIUM
    MEESE, JM
    PHYSICAL REVIEW B, 1974, 9 (10): : 4373 - 4391
  • [38] LOW-TEMPERATURE LARGE AREA CONTACTS TO N-TYPE SILICON
    JACK, JW
    CRYOGENICS, 1973, 13 (04) : 246 - 247
  • [39] LOW-TEMPERATURE PHOTOMAGNETOELECTRIC AND PHOTOCONDUCTIVE EFFECTS IN N-TYPE INAS
    LI, SS
    HUANG, CI
    PHYSICAL REVIEW B, 1971, 4 (12): : 4633 - &
  • [40] MECHANISM OF LOW-TEMPERATURE RADIATIVE RECOMBINATION IN N-TYPE INAS
    ALLABERENOV, OA
    ZOTOVA, NV
    NASLEDOV, DN
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1972, 5 (12): : 2050 - +