Content-based and knowledge graph-based paper recommendation: Exploring user preferences with the knowledge graphs for scientific paper recommendation

被引:12
|
作者
Tang, Hao [1 ]
Liu, Baisong [1 ]
Qian, Jiangbo [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Fenghua Rd, Ningbo, Zhejiang, Peoples R China
来源
关键词
graph neural network; high‐ order associations; knowledge graph; scientific paper recommendation; self‐ attention mechanism;
D O I
10.1002/cpe.6227
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Researchers usually face difficulties in finding scientific papers relevant to their research interests due to increasing growth. Recommender systems emerge as a leading solution to filter valuable items intelligently. Recently, deep learning algorithms, such as convolutional neural network, improved traditional recommendation technologies, for example, the graph-based or content-based methods. However, existing graph-based methods ignore high-order association between users and items on graphs, and content-based methods ignore global features of texts for explicit user preferences. Therefore, this paper proposes a Content-based and knowledge Graph-based Paper Recommendation method (CGPRec), which uses a two-layer self-attention block to obtain global features of texts for more complete explicit user preferences, and proposes an improved graph convolutional network for modeling high-order associations on the knowledge graph to mine implicit user preferences. And the knowledge graph in this paper is constructed with concept nodes, user nodes, paper nodes, and other meta-data nodes. Experimental results on a public dataset, CiteULike-a, and a real application log dataset, AHData, show that our model outperforms compared with baseline methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Hybrid Pattern Knowledge Graph-Based API Recommendation Approach
    Wang, Guan
    Wang, Weidong
    Li, Dian
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 465 - 476
  • [22] Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding
    Shokrzadeh, Zeinab
    Feizi-Derakhshi, Mohammad-Reza
    Balafar, Mohammad -Ali
    Mohasefi, Jamshid Bagherzadeh
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [23] Recommendation Algorithm Based on Knowledge Graph to Propagate User Preference
    Yang, Zhisheng
    Cheng, Jinyong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1564 - 1576
  • [24] Academic Paper Recommendation Based on Heterogeneous Graph
    Pan, Linlin
    Dai, Xinyu
    Huang, Shujian
    Chen, Jiajun
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA (CCL 2015), 2015, 9427 : 381 - 392
  • [25] Explicable recommendation based on knowledge graph
    Cai, Xingjuan
    Xie, Lijie
    Tian, Rui
    Cui, Zhihua
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [26] Knowledge Graph-Based Recommendation System for Personalized E-Learning
    Baig, Duaa
    Nurbakova, Diana
    MBaye, B.
    Calabretto, Sylvie
    ADJUNCT PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024, 2024, : 561 - 566
  • [27] Knowledge graph-based multi-context-aware recommendation algorithm
    Wu, Chao
    Liu, Sannyuya
    Zeng, Zeyu
    Chen, Mao
    Alhudhaif, Adi
    Tang, Xiangyang
    Alenezi, Fayadh
    Alnaim, Norah
    Peng, Xicheng
    Information Sciences, 2022, 595 : 179 - 194
  • [28] Knowledge Graph-Based Behavior Denoising and Preference Learning for Sequential Recommendation
    Liu, Hongzhi
    Zhu, Yao
    Wu, Zhonghai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2490 - 2503
  • [29] Knowledge graph-based mapping and recommendation to automate life cycle assessment
    Peng, Tao
    Gao, Lu
    Agbozo, Reuben S. K.
    Xu, Yuming
    Svynarenko, Kateryna
    Wu, Qi
    Li, Changpeng
    Tang, Renzhong
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [30] Intelligent personalised exercise recommendation: A weighted knowledge graph-based approach
    Lv, Pin
    Wang, Xiaoxin
    Xu, Jia
    Wang, Junbin
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2021, 29 (05) : 1403 - 1419