Adaptive Deep Convolutional Neural Networks for Scene-Specific Object Detection

被引:32
|
作者
Li, Xudong [1 ]
Ye, Mao [1 ]
Liu, Yiguang [2 ]
Zhu, Ce [3 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Minist Educ, Sch Comp Sci & Engn, Ctr Robot,Key Lab NeuroInformat, Chengdu 611731, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Comp Sci, Vis & Image Proc Lab, Chengdu 610065, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 611731, Sichuan, Peoples R China
[4] Univ Elect Sci & Technol China, Ctr Robot, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; object detection; surveillance scene; FRAMEWORK;
D O I
10.1109/TCSVT.2017.2749620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A deep convolutional neural network (CNN) becomes a widely used tool for object detection. Many previous works have achieved excellent performance on object detection benchmarks. However, these works present generic detectors whose performance will drop rapidly when they are applied to a surveillance scene. In this paper, we propose an efficient method to construct a scene-specific regression model based on a generic CNN-based classifier. Our regression model is an adaptive deep CNN (ADCNN), which can predict object locations in the surveillance scene. First, we transfer the generic CNN-based classifier to the surveillance scene by selecting useful kernels. Second, we learn the context information of the surveillance scene in our regression model for accurate location prediction. Our main contributions are: 1) a transfer learning method that selects useful kernels in the generic CNN-based classifier; 2) a special architecture that can effectively learn the local and global context information in the surveillance scene; and 3) a new objective function to effectively train parameters in ADCNN. Compared with some state-of-the-art models, ADCNN achieves the best performance on three surveillance data sets for pedestrian detection and one surveillance data set for vehicle detection.
引用
收藏
页码:2538 / 2551
页数:14
相关论文
共 50 条
  • [21] Unsupervised domain-adaptive scene-specific pedestrian detection for static video surveillance
    Mou, Quanzheng
    Wei, Longsheng
    Wang, Conghao
    Luo, Dapeng
    He, Songze
    Zhang, Jing
    Xu, Huimin
    Luo, Chen
    Gao, Changxin
    PATTERN RECOGNITION, 2021, 118
  • [22] Scene text detection with fully convolutional neural networks
    Liu, Zhandong
    Zhou, Wengang
    Li, Houqiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (13) : 18205 - 18227
  • [23] A parallel vision approach to scene-specific pedestrian detection
    Zhang, Wenwen
    Wang, Kunfeng
    Liu, Yating
    Lu, Yue
    Wang, Fei-Yue
    NEUROCOMPUTING, 2020, 394 (394) : 114 - 126
  • [24] Outdoor Scene Labeling Using Deep Convolutional Neural Networks
    Wen Jun
    Zhong Chaolliang
    Liu Shirong
    Wang Jian
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3953 - 3958
  • [25] Pneumonia Detection through Adaptive Deep Learning Models of Convolutional Neural Networks
    Militante, Sammy, V
    Dionisio, Nanette, V
    Sibbaluca, Brandon G.
    2020 11TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2020, : 88 - 93
  • [26] The contribution of object identity and configuration to scene representation in convolutional neural networks
    Tang, Kevin
    Chin, Matthew
    Chun, Marvin
    Xu, Yaoda
    PLOS ONE, 2022, 17 (06):
  • [27] Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition
    Wu, Kevin
    Wu, Eric
    Kreiman, Gabriel
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [28] Object-Scene Convolutional Neural Networks for Event Recognition in Images
    Wang, Limin
    Wang, Zhe
    Du, Wenbin
    Qiao, Yu
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [29] Coarse-to-fine salient object detection based on deep convolutional neural networks
    Li, Ying
    Cui, Fan
    Xue, Xizhe
    Chan, Jonathan Cheung-Wai
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 64 : 21 - 32
  • [30] Virtual Multi-modal Object Detection and Classification with Deep Convolutional Neural Networks
    Mitsakos, Nikolaos
    Papadakis, Manos
    WAVELETS AND SPARSITY XVIII, 2019, 11138