THE ALGORITHMIC NUMBERS IN NON-ARCHIMEDEAN NUMERICAL COMPUTING ENVIRONMENTS

被引:4
|
作者
Benci, Vieri [1 ]
Cococcioni, Marco [2 ]
机构
[1] Univ Pisa, Dept Math, I-56127 Tuscany, IT, Italy
[2] Univ Pisa, Dept Informat Engn, I-56126 Tuscany, IT, Italy
来源
关键词
Infinitesimal numbers; nonstandard analysis; euclidean numbers; non-archimedean scientific computing; fixed-length formats; hardware-friendly representations; ULTRAFUNCTIONS;
D O I
10.3934/dcdss.2020449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [1, 5, 13, 26]. However, until now, the Non-standard techniques have been applied to theoretical models. In this paper we investigate the possibility to implement such models in numerical simulations. First we define the field of Euclidean numbers which is a particular field of hyperreal numbers. Then, we introduce a set of families of Euclidean numbers, that we have called altogether algorithmic numbers, some of which are inspired by the IEEE 754 standard for floating point numbers. In particular, we suggest three formats which are relevant from the hardware implementation point of view: the Polynomial Algorithmic Numbers, the Bounded Algorithmic Numbers and the Truncated Algorithmic Numbers. In the second part of the paper, we show a few applications of such numbers.
引用
收藏
页码:1673 / 1692
页数:20
相关论文
共 50 条
  • [21] NON-ARCHIMEDEAN ORTHOGONALITY
    SHILKRET, N
    ARCHIV DER MATHEMATIK, 1976, 27 (01) : 67 - 78
  • [22] NON-ARCHIMEDEAN FIELD
    DEAN, DW
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (06): : 691 - &
  • [23] NON-ARCHIMEDEAN FIELD
    RIESENBE.NR
    DAVIES, RO
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 85 - &
  • [24] Non-Archimedean modernities
    Scheidel, Walter
    INTERDISCIPLINARY SCIENCE REVIEWS, 2022, 47 (3-4) : 520 - 529
  • [25] NON-ARCHIMEDEAN GNS CONSTRUCTION AND NON-ARCHIMEDEAN KREIN-MILMAN THEOREM
    Mihara, Tomoki
    OPERATORS AND MATRICES, 2017, 11 (04): : 969 - 998
  • [26] Non-archimedean pinchings
    Michael Temkin
    Mathematische Zeitschrift, 2022, 301 : 2099 - 2109
  • [27] Differentiability of non-archimedean volumes and non-archimedean Monge-Ampere equations
    Burgos Gil, Jose Ignacio
    Gubler, Walter
    Jell, Philipp
    Kuennemann, Klaus
    Martin, Florent
    Lazarsfeld, Robert
    ALGEBRAIC GEOMETRY, 2020, 7 (02): : 113 - 152
  • [28] Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers
    A. Mukhammadiev
    D. Tiwari
    G. Apaaboah
    P. Giordano
    Monatshefte für Mathematik, 2021, 196 : 163 - 190
  • [29] Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers
    Mukhammadiev, A.
    Tiwari, D.
    Apaaboah, G.
    Giordano, P.
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 163 - 190
  • [30] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    V. Bernik
    N. Budarina
    H. O’Donnell
    Acta Mathematica Hungarica, 2018, 154 : 265 - 278