The complexity of predicate default logic over a countable domain

被引:2
|
作者
Milnikel, RS [1 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
default logic; circumscription; computability theoretic complexity;
D O I
10.1016/S0168-0072(02)00064-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lifschitz introduced the notion of defining extensions of predicate default theories not as absolute, but relative to a specified domain. We look specifically at default theories over a countable domain and show the set of default theories which possess an omega-extension is Sigma(2)(1)-complete. That the set is in Sigma(2)(1) is shown by writing a nearly circumscriptive formula whose omega-models correspond to the omega-extensions of a given default theory; similarly, Sigma(2)(1)-hardness is established by a method for translating formulas into default theories in such a way that omega-models of the circumscriptive formula correspond to omega-extensions of the default theory. (That the set of circumscriptive formulas which have omega-models is Sigma(2)(1)-complete was established by Schlipf.) (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 50 条
  • [21] Block products for algebras over countable words and applications to logic
    Adsul, Bharat
    Sarkar, Saptarshi
    Sreejith, A. V.
    2019 34TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2019,
  • [22] Expressing default logic variants in default logic
    Delgrande, JP
    Schaub, T
    JOURNAL OF LOGIC AND COMPUTATION, 2005, 15 (05) : 593 - 621
  • [23] Rational Pavelka predicate logic is a conservative extension of Lukasiewicz predicate logic
    Hájek, P
    Paris, J
    Shepherdson, J
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (02) : 669 - 682
  • [24] FALLACIES IN PREDICATE LOGIC
    BELL, D
    MIND, 1971, 80 (317) : 145 - 147
  • [25] DYNAMIC PREDICATE LOGIC
    GROENENDIJK, J
    STOKHOF, M
    LINGUISTICS AND PHILOSOPHY, 1991, 14 (01) : 39 - 100
  • [26] BISIMULATIONS AND PREDICATE LOGIC
    FERNANDO, T
    JOURNAL OF SYMBOLIC LOGIC, 1994, 59 (03) : 924 - 944
  • [27] SUBJECT AND PREDICATE LOGIC
    THERON, S
    MODERN SCHOOLMAN, 1989, 66 (02): : 129 - 139
  • [28] The complexity of temporal logic over the reals
    Reynolds, M.
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (08) : 1063 - 1096
  • [29] ON DEONTIC PREDICATE LOGIC
    PUGA, LZ
    DACOSTA, NCA
    JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (04) : 1101 - 1102
  • [30] Coalgebraic Predicate Logic
    Litak, Tadeusz
    Pattinson, Dirk
    Sano, Katsuhiko
    Schroder, Lutz
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012, PT II, 2012, 7392 : 299 - 311