The complexity of predicate default logic over a countable domain

被引:2
|
作者
Milnikel, RS [1 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
default logic; circumscription; computability theoretic complexity;
D O I
10.1016/S0168-0072(02)00064-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lifschitz introduced the notion of defining extensions of predicate default theories not as absolute, but relative to a specified domain. We look specifically at default theories over a countable domain and show the set of default theories which possess an omega-extension is Sigma(2)(1)-complete. That the set is in Sigma(2)(1) is shown by writing a nearly circumscriptive formula whose omega-models correspond to the omega-extensions of a given default theory; similarly, Sigma(2)(1)-hardness is established by a method for translating formulas into default theories in such a way that omega-models of the circumscriptive formula correspond to omega-extensions of the default theory. (That the set of circumscriptive formulas which have omega-models is Sigma(2)(1)-complete was established by Schlipf.) (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 50 条
  • [1] On the complexity of extension checking in default logic
    Liberatore, P
    INFORMATION PROCESSING LETTERS, 2006, 98 (02) : 61 - 65
  • [2] Proof complexity of propositional default logic
    Beyersdorff, Olaf
    Meier, Arne
    Mueller, Sebastian
    Thomas, Michael
    Vollmer, Heribert
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (7-8): : 727 - 742
  • [3] Proof Complexity of Propositional Default Logic
    Beyersdorff, Olaf
    Meier, Arne
    Mueller, Sebastian
    Thomas, Michael
    Vollmer, Heribert
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2010, PROCEEDINGS, 2010, 6175 : 30 - +
  • [4] The Complexity of Reasoning for Fragments of Default Logic
    Beyersdorff, Olaf
    Meier, Arne
    Thomas, Michael
    Vollmer, Heribert
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2009, PROCEEDINGS, 2009, 5584 : 51 - 64
  • [5] The complexity of reasoning for fragments of default logic
    Beyersdorff, Olaf
    Meier, Arne
    Thomas, Michael
    Vollmer, Heribert
    JOURNAL OF LOGIC AND COMPUTATION, 2012, 22 (03) : 587 - 604
  • [6] Proof complexity of propositional default logic
    Olaf Beyersdorff
    Arne Meier
    Sebastian Müller
    Michael Thomas
    Heribert Vollmer
    Archive for Mathematical Logic, 2011, 50 : 727 - 742
  • [7] COMPLEXITY RESULTS FOR THE DEFAULT-LOGIC AND THE AUTOEPISTEMIC LOGIC
    STEFFEN, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 626 : 339 - 352
  • [8] A sequent calculus for skeptical reasoning in predicate default logic - (Extended abstract)
    Milnikel, RS
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDING, 2003, 2711 : 564 - 575
  • [9] Domain theory meets default logic
    J Logic Comput, 1 (01):
  • [10] Complexity of the unique extension problem in default logic
    Zhao, XS
    Liberatore, P
    FUNDAMENTA INFORMATICAE, 2002, 53 (01) : 79 - 104