Predictive Analysis and Prognostic Approach of Diabetes Prediction with Machine Learning Techniques

被引:4
|
作者
Omana, J. [1 ]
Moorthi, M. [2 ]
机构
[1] Anna Univ, Prathyusha Engn Coll, Dept Comp Sci & Engn, Thiruvallur, India
[2] Saveetha Engn Coll, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
Prognostic modelling; Prediction; Automated modelling; Type 2 diabetes mellitus; Sparse data handling; Approximation; Machine learning algorithm; CLASSIFICATION; DISEASE;
D O I
10.1007/s11277-021-08274-w
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Medical experts indulge in numerous strategies for efficient and predictive measures to model the health status of patients and formulate the patterns that are formed in test results. Most patients would dream of their betterments of their health conditions and thus preventing the progression of any disease. When diabetics is considered in the model, or highly intervening methodology would be required for pre-diabetic individuals. Hidden Markov models have been modified into variant models to derive predictions that accurately produce expected results by investigating patterns of clinical observations from a detailed sample of patient's dataset. There are yet unanswered and concerning challenges to derive an absolute model for predicting diabetes. The datasets from which the patterns are derived from, still holds levels of in completeness, irregularity and obvious clinical interventions during the diagnosis. The Electronic Medical Records are not furnished with all requisite information in all conditions and scenarios. Due to these irregularities prediction has become highly challenging and there is increase in misclassification rate. Newton's Divide Difference Method (NDDM) is a conventional model for filling the irregularity in electronic datasets through divided differences. The classical approach considers a polynomial approximation approach, thus leading to Runge Phenomenon. If the interval between data fields id higher, severity of finding the irregularities is even higher. By using this type of technique it helps in improving the accuracy thereby bringing in high level prediction without any error and misclassification. In this technique proposed, a novel approximation technique is implemented using the Euclidean distance parameter over the NDDM approximation to predict the outcomes or risk of Type 2 Diabetes Mellitus among patients. Real world entities in CPCSSN are considered for this study and proposed method is tested. The proposed method filled the irregularity in the data components of EMR with better approximations and the quality of prediction has improved significantly.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [11] Optimization of an Analysis Method for Diabetes Prediction Using Classical and Ensemble Machine Learning Techniques
    Naranjo, Edison
    Arguero, Berenice
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 527 - 536
  • [12] Diabetes prediction using machine learning and explainable AI techniques
    Tasin, Isfafuzzaman
    Nabil, Tansin Ullah
    Islam, Sanjida
    Khan, Riasat
    HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (1-2) : 1 - 10
  • [13] COMPARATIVE RISK ANALYSIS ON PREDICTION OF DIABETES MELLITUS USING MACHINE LEARNING APPROACH
    Swain, Aparimita
    Mohanty, Sachi Nandan
    Das, Ananta Chandra
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 3312 - 3317
  • [14] A stacked ensemble machine learning approach for the prediction of diabetes
    Oliullah, Khondokar
    Rasel, Mahedi Hasan
    Islam, Md. Manzurul
    Islam, Md. Reazul
    Wadud, Md. Anwar Hussen
    Whaiduzzaman, Md.
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2024, 23 (01) : 603 - 617
  • [15] Prediction and Diagnosis of Diabetes Mellitus -A Machine Learning Approach
    Vijayan, Veena V.
    Anjali, C.
    PROCEEDINGS OF THE 2015 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2015, : 122 - 127
  • [16] A mixed Approach of Deep Learning and Machine Learning Techniques for Improving Accuracy in Stock Analysis and Prediction
    Kanchana, D.
    Shobana, J.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (06): : 89 - 95
  • [17] Predictive modelling and analytics for diabetes using a machine learning approach
    Kaur, Harleen
    Kumari, Vinita
    APPLIED COMPUTING AND INFORMATICS, 2022, 18 (1/2) : 90 - 100
  • [18] Diabetes Mellitus Disease Prediction and Type Classification Involving Predictive Modeling Using Machine Learning Techniques and Classifiers
    Ahamed, B. Shamreen
    Arya, Meenakshi S.
    Sangeetha, S. K. B.
    Auxilia Osvin, Nancy V.
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [19] Analysis of Predictive Parameters in Prediction of the Occurrence of Type 2 Diabetes Using Machine Learning Algorithms
    Hadzalic, Sumeja
    Obralija, Arnela
    Becirovic, Seila
    Kelle, Belma Pehlivanovic
    Krupalija, Ehlimana
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 732 - 740
  • [20] Prognostic Biomarkers Identification for Diabetes Prediction by Utilizing Machine Learning Classifiers
    Das, Utsha
    Srizon, Azmain Yakin
    Islam, Md Ansarul
    Tonmoy, Dhiman Sikder
    Hasan, Md Al Mehedi
    2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR INDUSTRY 4.0 (STI), 2020,