Low-Temperature Growth of Graphene on a Semiconductor

被引:7
|
作者
Rost, Hakon, I [1 ]
Chellappan, Rajesh Kumar [1 ]
Strand, Frode S. [1 ]
Grubisic-Cabo, Antonija [2 ]
Reed, Benjamen P. [3 ]
Prieto, Mauricio J. [4 ]
Tanase, Liviu C. [4 ]
Caldas, Lucas de Souza [4 ]
Wongpinij, Thipusa [5 ]
Euaruksakul, Chanan [5 ]
Schmidt, Thomas [4 ]
Tadich, Anton [6 ]
Cowie, Bruce C. C. [6 ]
Li, Zheshen [7 ]
Cooil, Simon P. [3 ,8 ]
Wells, Justin W. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Ctr Quantum Spintron, Dept Phys, NO-7491 Trondheim, Norway
[2] Monash Univ, Sch Phys & Astron, Clayton, Vic 3168, Australia
[3] Aberystwyth Univ, Dept Phys, Aberystwyth SY23 3BZ, Dyfed, Wales
[4] Max Planck Gesell, Dept Interface Sci, Fritz Haber Inst, D-14195 Berlin, Germany
[5] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand
[6] Australian Synchrotron, Clayton, Vic 3168, Australia
[7] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[8] Univ Oslo UiO, Dept Phys, Semicond Phys, NO-0371 Oslo, Norway
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 07期
关键词
Graphene;
D O I
10.1021/acs.jpcc.0c10870
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be grown on transition-metal-treated 6H-SiC(0001) surfaces, with an onset of graphitization starting around 450-500 degrees C. From the chemical reaction between SiC and thin films of Fe or Ru, sp(3) carbon is liberated from the SiC crystal and converted to sp(2) carbon at the surface. The quality of the graphene is demonstrated by using angle-resolved photoemission spectroscopy and low-energy electron diffraction. Furthermore, the orientation and placement of the graphene layers relative to the SiC substrate are verified by using angle-resolved absorption spectroscopy and energy-dependent photoelectron spectroscopy, respectively. With subsequent thermal treatments to higher temperatures, a steerable diffusion of the metal layers into the bulk SiC is achieved. The result is graphene supported on magnetic silicide or optionally, directly on semiconductor, at temperatures ideal for further large-scale processing into graphene-based device structures.
引用
收藏
页码:4243 / 4252
页数:10
相关论文
共 50 条
  • [31] Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film
    Zhang, Jia
    Li, Junjie
    Wang, Zhenlong
    Wang, Xiaona
    Feng, Wei
    Zheng, Wei
    Cao, Wenwu
    Hu, PingAn
    CHEMISTRY OF MATERIALS, 2014, 26 (07) : 2460 - 2466
  • [32] Low-Temperature Graphene Growth and Shrinkage Dynamics from Petroleum Asphaltene on CuO Nanoparticle
    Zhang, Bingjun
    Jiang, Lin
    Rane, Kaustubh
    Goual, Lamia
    Piri, Mohammad
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (32) : 12001 - 12010
  • [33] Growth of graphene nanowalls in low-temperature plasma: Experimental insight in initial growth and importance of wall conditioning
    Jagodar, Andrea
    Santhosh, Neelakandan M.
    Strunskus, Thomas
    von Wahl, Erik
    Petit, Agnes
    Lecas, Thomas
    Košiček, Martin
    Cvelbar, Uros
    Berndt, Johannes
    Kovacevic, Eva
    Applied Surface Science, 2024, 643
  • [34] SPECIAL ISSUE ON LOW-TEMPERATURE SEMICONDUCTOR ELECTRONICS - FOREWORD
    GAENSSLEN, FH
    JAEGER, RC
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (01) : 1 - 3
  • [35] LOW-TEMPERATURE SEMICONDUCTOR RESISTANCE THERMOMETER WITH HEAT CONDUCTOR
    LOGVINENKO, SP
    ROSSOSHANSKII, OA
    CRYOGENICS, 1985, 25 (05) : 249 - 250
  • [36] LOW-TEMPERATURE MAGNETIC SPECTROSCOPY OF A DILUTE MAGNETIC SEMICONDUCTOR
    AWSCHALOM, DD
    WARNOCK, J
    VONMOLNAR, S
    PHYSICAL REVIEW LETTERS, 1987, 58 (08) : 812 - 815
  • [37] LOW-TEMPERATURE REACTIONS AT METAL-SEMICONDUCTOR INTERFACES
    SINCLAIR, R
    KONNO, T
    KO, DH
    OGAWA, S
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1991, (117): : 283 - 287
  • [38] LOW-TEMPERATURE ISOLATED-TARGET SEMICONDUCTOR BOLOMETERS
    PANKRATOV, NA
    MALYAROV, VG
    ENUKOVA, TA
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1980, 47 (06): : 343 - 345
  • [39] BEHAVIOR OF SEMICONDUCTOR LOW-TEMPERATURE SENSORS IN ELECTROMAGNETIC ENVIRONMENTS
    ZAWADZKI, M
    SUJAK, B
    CRYOGENICS, 1983, 23 (11) : 599 - 602
  • [40] NEW RESULTS IN LOW-TEMPERATURE STUDIES OF SEMICONDUCTOR SURFACES
    GRAZHULIS, VA
    APPLIED SURFACE SCIENCE, 1988, 33-4 : 1 - 14