Oscillator parameters of semiconductor heterostructures

被引:0
|
作者
Netesova, NP [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119899, Russia
关键词
oscillator model; electron losses; plasma energy; semiconductor heterostructures;
D O I
10.1117/12.356932
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Harmonic and anharmonic oscillator electron models for the energy description of the Al-x Ga1-x As / GaAs heterostructures are proposed. The one and polyoscillator optical functions (the real and the imaginary part of the dielectric function and the refractive index, the optical conductivity, the absorption coefficient, the loss function, the corrected loss function, the reflectance factor) of GaAs, AlAs, AlGaAs, Al-x Ga1-x As between 0 and 25 eV are presented. This model provides the optical functions determined on a wavelength-by-wavelength basis, without having to resort to the Kramers-Kronig transformation. The energy parameters (the valence electron plasma, effective plasma, natural, effective natural, dielectric maximum and minimum, radiant friction, local internal field energies) of the heterostructures are computed. The corrected loss functions of GaAs, AlAs are dominated by peaks, with maxima near 15.62 eV and 15.31 eV, accordingly. It can be assigned to a collective excitation of all valence electrons. The role of the plasma oscillations are proved. The potential barriers between semicionductor phases are overcome by the plasma mode energies. In view of experimental results, the reversible separate oscillator decomposition of the energy functions is conducted by this approach. The latent local districts are revealed in the heterostructures.
引用
收藏
页码:716 / 727
页数:12
相关论文
共 50 条
  • [21] Slow light in semiconductor heterostructures
    Ku, P. C.
    Chang-Hasnain, C. J.
    Chuang, S. L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (05) : R93 - R107
  • [22] STRAIN RELAXATION IN SEMICONDUCTOR HETEROSTRUCTURES
    FISCHER, A
    KUHNE, H
    MODERN PHYSICS LETTERS B, 1995, 9 (11-12): : 655 - 664
  • [23] Mesoscovic magnetic/semiconductor heterostructures
    Xu, Yong Bing
    Ahmad, Ehsan
    Lu, Yong Xiong
    Claydon, Jill S.
    Zhai, Ya
    van der Laan, Gerrit
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (05) : 455 - 458
  • [24] Interband tunnelling in semiconductor heterostructures
    Zakharova, A
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1998, 13 (06) : 569 - 575
  • [25] Transport studies in semiconductor heterostructures
    Jauho, AP
    FRONTIERS IN NANOSCALE SCIENCE OF MICRON/SUBMICRON DEVICES, 1996, 328 : 439 - 457
  • [26] The history and future of semiconductor heterostructures
    Zh. I. Alferov
    Semiconductors, 1998, 32 : 1 - 14
  • [27] RESONANT TUNNELING IN SEMICONDUCTOR HETEROSTRUCTURES
    MENDEZ, EE
    JOURNAL DE PHYSIQUE, 1987, 48 (C-5): : 423 - 430
  • [28] ELECTRONIC MOBILITY IN SEMICONDUCTOR HETEROSTRUCTURES
    MENDEZ, EE
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) : 1720 - 1727
  • [29] PHOTOACOUSTIC CHARACTERIZATION OF SEMICONDUCTOR HETEROSTRUCTURES
    KANEMITSU, Y
    NABETA, H
    MATSUE, H
    YAMAMOTO, A
    NAGATA, Y
    YAMANAKA, K
    KODA, T
    MASUMOTO, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 : 29 - 31
  • [30] ELECTRON TUNNELLING IN SEMICONDUCTOR HETEROSTRUCTURES
    MUKHERJI, D
    NAG, BR
    SOLID-STATE ELECTRONICS, 1978, 21 (03) : 555 - 559