Data-driven combinatorial optimization for sensor-based assessment of near falls

被引:3
|
作者
Kammerdiner, Alla R. [1 ]
Guererro, Andre N. [1 ]
机构
[1] New Mexico State Univ, POB 30001,MSC 4230, Las Cruces, NM 88003 USA
基金
美国国家科学基金会;
关键词
The multidimensional assignment problem; Falls and near falls; Systems of wearable sensors; RATER;
D O I
10.1007/s10479-017-2585-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Falls represent a considerable public health problem, especially in older population. We describe and evaluate data-driven operations research models for detection and situational assessment of falls and near falls with a system of wearable sensors. The models are formulated as instances of the multidimensional assignment problem. Our computational studies provide some initial empirical evidence of the potential usefulness of this new application of the multidimensional assignment problem.
引用
收藏
页码:137 / 153
页数:17
相关论文
共 50 条
  • [41] Data-Driven Combinatorial Design of Highly Energetic Materials
    Wen, Linyuan
    Wang, Yinglei
    Liu, Yingzhe
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 6 (01): : 64 - 76
  • [42] A Data-Driven LSTM Soft Sensor Model Based on Bayesian Optimization for Hydraulic Pressure Measurement of Excavator
    Ma, Wei
    Tan, Lin
    Feng, Hao
    Ma, Shoulei
    Cao, Donghui
    Yin, Chenbo
    IEEE SENSORS JOURNAL, 2023, 23 (21) : 25749 - 25759
  • [43] Data Valuation From Data-Driven Optimization
    Mieth, Robert
    Morales, Juan M.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2025, 12 (01): : 954 - 966
  • [44] Sensor-based assessment of herbicide effects
    Streibig, J. C.
    Rasmussen, J.
    Andujar, D.
    Andreasen, C.
    Berge, T. W.
    Chachalis, D.
    Dittmann, T.
    Gerhards, R.
    Giselsson, T. M.
    Hamouz, P.
    Jaeger-Hansen, C.
    Jensen, K.
    Jorgensen, R. N.
    Keller, M.
    Laursen, M.
    Midtiby, H. S.
    Nielsen, J.
    Mueller, S.
    Nordmeyer, H.
    Peteinatos, G.
    Papadopoulos, A.
    Svensgaard, J.
    Weis, M.
    Christensen, S.
    WEED RESEARCH, 2014, 54 (03) : 223 - 233
  • [45] Efficient data-driven optimization with noisy data
    Parys, Bart P. G. Van
    OPERATIONS RESEARCH LETTERS, 2024, 54
  • [46] Data-Driven Sensor Selection Method Based on Proximal Optimization for High-Dimensional Data With Correlated Measurement Noise
    Nagata, Takayuki
    Yamada, Keigo
    Nonomura, Taku
    Nakai, Kumi
    Saito, Yuji
    Ono, Shunsuke
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 5251 - 5264
  • [47] Method on PID Controller Optimization Based on the Data-Driven Technique
    Wang, Yinsong
    Jiao, Yang
    Cai, Bo
    Zhao, Jing
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 2567 - 2571
  • [48] Data-Driven Based State Transition Algorithm for Dynamic Optimization
    Zhang, Yunxiang
    Zhou, Xiaojun
    Yang, Chunhua
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1091 - 1096
  • [49] Managing uncertainty in data-driven simulation-based optimization
    Hullen, Gordon
    Zhai, Jianyuan
    Kim, Sun Hye
    Sinha, Anshuman
    Realff, Matthew J.
    Boukouvala, Fani
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 136
  • [50] Data-driven Operation-based Aircraft Design Optimization
    Kim, Dajung
    Druot, Thierry
    Liem, Rhea P.
    AIAA AVIATION 2020 FORUM, 2020,