Empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data

被引:2
|
作者
Qin, Yong-song [1 ]
Qian, Yong-jiang [1 ]
机构
[1] Guangxi Normal Univ, Sch Math Sci, Guilin 541004, Guangxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Empirical likelihood; confidence Interval; quantile; missing data; imputation; LINEAR-MODELS; INFERENCE; IMPUTATION;
D O I
10.1007/s10255-006-6116-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that there are two nonparametric populations x and y with missing data on both of them. We are interested in constructing confidence intervals on the quantile differences of x and y. Random imputation is used. Empirical likelihood confidence intervals on the differences are constructed.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [21] Weighted empirical likelihood ratio confidence intervals for the mean with censored data
    Ren, JJ
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (03) : 498 - 516
  • [22] Empirical likelihood based confidence intervals for copulas
    Chen, Jian
    Peng, Liang
    Zhao, Yichuan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 137 - 151
  • [23] Empirical likelihood-based confidence intervals for length-biased data
    Ning, J.
    Qin, J.
    Asgharian, M.
    Shen, Y.
    STATISTICS IN MEDICINE, 2013, 32 (13) : 2278 - 2291
  • [24] Empirical Likelihood Confidence Intervals for Lorenz Curve with Length-Biased Data
    Vejdani, Mahdiyeh
    Roknabadi, Abdolhamid Rezaei
    Fakoor, Vahid
    Jomhoori, Sarah
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (5-6) : 1617 - 1631
  • [25] Empirical likelihood-based confidence intervals for data with possible zero observations
    Chen, SX
    Qin, J
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (01) : 29 - 37
  • [26] Empirical Likelihood Confidence Intervals for Lorenz Curve with Length-Biased Data
    Mahdiyeh Vejdani
    Abdolhamid Rezaei Roknabadi
    Vahid Fakoor
    Sarah Jomhoori
    Iranian Journal of Science, 2023, 47 : 1617 - 1631
  • [27] Improved confidence intervals for quantiles
    Yoshihiko Maesono
    Spiridon Penev
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 167 - 189
  • [28] Improved confidence intervals for quantiles
    Maesono, Yoshihiko
    Penev, Spiridon
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (01) : 167 - 189
  • [29] Empirical likelihood confidence intervals for adaptive cluster sampling
    Salehi, Mohammad
    Mohammadi, Mohammad
    Rao, J. N. K.
    Berger, Yves G.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2010, 17 (01) : 111 - 123
  • [30] Empirical likelihood confidence intervals for the endpoint of a distribution function
    Deyuan Li
    Liang Peng
    Yongcheng Qi
    TEST, 2011, 20 : 353 - 366