VERTEX COVER ALGEBRAS OF UNIMODULAR HYPERGRAPHS

被引:0
|
作者
Herzog, Juergen [1 ]
Hibi, Takayuki [2 ]
Ngo Viet Trung [3 ]
机构
[1] Univ Duisburg Essen, Fachbereich Mathemat & Informat, Campus Essen, D-45117 Essen, Germany
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
[3] Inst Math, Hanoi 10307, Vietnam
关键词
Vertex cover algebra; unimodular hypergraph; symbolic power; monomial ideal;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that all vertex cover algebras of a hypergraph are standard graded if and only if the hypergraph is unimodular. This has interesting consequences on the symbolic powers of monomial ideals.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 50 条
  • [21] On the Inapproximability of Vertex Cover on k-Partite k-Uniform Hypergraphs
    Guruswami, Venkatesan
    Saket, Rishi
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2010, 6198 : 360 - 371
  • [22] A novel rough set-based approach for minimum vertex cover of hypergraphs
    Zhou, Qian
    Xie, Xiaojun
    Dai, Hua
    Meng, Weizhi
    Neural Computing and Applications, 2022, 34 (24) : 21793 - 21808
  • [23] ON THE HILBERT SERIES OF VERTEX COVER ALGEBRAS OF UNMIXED BIPARTITE GRAPHS
    Ion, Cristian
    MATHEMATICAL REPORTS, 2011, 13 (04): : 337 - 346
  • [24] Vertex algebras and vertex poisson algebras
    Li, HS
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) : 61 - 110
  • [25] INAPPROXIMABILITY OF MINIMUM VERTEX COVER ON k-UNIFORM k-PARTITE HYPERGRAPHS
    Guruswami, Venkatesan
    Sachdeva, Sushant
    Saket, Rishi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 36 - 58
  • [26] Antimagic vertex labelings of hypergraphs
    Sonntag, M
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 187 - 199
  • [27] Vertex and Edge Dimension of Hypergraphs
    Manrique, Martin
    Arumugam, S.
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 183 - 200
  • [28] THE STANDARD GRADED PROPERTY FOR VERTEX COVER ALGEBRAS OF QUASI-TREES
    Constantinescu, Alexandru
    Le Dinh Nam
    MATEMATICHE, 2008, 63 (02): : 173 - 183
  • [29] Vertex and Edge Dimension of Hypergraphs
    Martín Manrique
    S. Arumugam
    Graphs and Combinatorics, 2015, 31 : 183 - 200
  • [30] Minimum vertex cover problems on random hypergraphs: Replica symmetric solution and a leaf removal algorithm
    Takabe, Satoshi
    Hukushima, Koji
    PHYSICAL REVIEW E, 2014, 89 (06):