Gamma-based nuclear fusion measurements at inertial confinement fusion facilities

被引:8
|
作者
Mohamed, Z. L. [1 ]
Kim, Y. [1 ]
Knauer, J. P. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY USA
来源
FRONTIERS IN PHYSICS | 2022年 / 10卷
关键词
inertial confinement fusion; fusion gamma ray; laser-driven fusion; omega laser facility; nuclear astrophysics; big bang nucleosynthesis; gamma-ray emission spectra; S factor; CROSS-SECTION; BRANCHING RATIO; LI-6; CNO;
D O I
10.3389/fphy.2022.944339
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Experiments performed on an inertial confinement fusion (ICF) platform offer a unique opportunity to study nuclear reactions, including reaction branches that are useful for diagnostic applications in ICF experiments as well as several that are relevant to nuclear astrophysics. In contrast to beam-accelerator experiments, experiments performed on an ICF platform occur over a short time scale and produce a plasma environment with physical parameters that are directly relevant to big bang and/or stellar nucleosynthesis. Several reactions of interest, such as D(T,gamma)He-5, H(D,gamma)He-3, H(T,gamma)He-4, and T(He-3,gamma)Li-6 produce high-energy gamma rays. S factors or branching ratios for these four reactions have recently been studied using various temporally-resolved Cherenkov detectors at the Omega laser facility. This work describes these detectors as well as the current standard technique for performing these measurements. Recent results for reactions D(T,gamma)He-5, H(D,gamma)He-3, H(T,gamma)He-4, and T(He-3,gamma)Li-6 are reviewed and compared to accelerator-based measurements. Limitations associated with implosion experiments and use of the current standard gamma detectors are discussed. A basic design for a gamma spectrometer for use at ICF facilities is briefly outlined.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGA
    Rygg, J. R.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Meyerhofer, D. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    PHYSICS OF PLASMAS, 2007, 14 (05)
  • [22] ADVANCED FUSION FUEL FOR INERTIAL CONFINEMENT FUSION
    KHODABAKHSH, R
    HORA, H
    MILEY, GH
    STENING, RJ
    PIERUSCHKA, P
    FUSION TECHNOLOGY, 1992, 22 (01): : 50 - 55
  • [23] MUONIC AND POLARIZED FUSION FOR INERTIAL CONFINEMENT FUSION
    SEIFRITZ, W
    GOEL, B
    ATOMKERNENERGIE-KERNTECHNIK, 1983, 43 (03): : 198 - 202
  • [24] Diagnosing inertial confinement fusion gamma ray physics (invited)
    Herrmann, H. W.
    Hoffman, N.
    Wilson, D. C.
    Stoeffl, W.
    Dauffy, L.
    Kim, Y. H.
    McEvoy, A.
    Young, C. S.
    Mack, J. M.
    Horsfield, C. J.
    Rubery, M.
    Miller, E. K.
    Ali, Z. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [25] Review of inertial confinement fusion
    Haines, MG
    ASTROPHYSICS AND SPACE SCIENCE, 1998, 256 (1-2) : 125 - 139
  • [26] Outlook for inertial confinement fusion
    Nuckolls, JH
    JOURNAL OF FUSION ENERGY, 1996, 15 (3-4) : 155 - 156
  • [27] INERTIAL CONFINEMENT FUSION TARGETS
    NUCKOLLS, JH
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) : 542 - 542
  • [28] INERTIAL CONFINEMENT FUSION AT NRL
    BODNER, SE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) : 548 - 548
  • [29] STATUS OF INERTIAL CONFINEMENT FUSION
    SCHRIEVER, RL
    BODNER, S
    COOK, DL
    GLASS, AJ
    GOLDSTONE, PD
    KEEFE, D
    MCCRORY, RL
    STORM, E
    JOURNAL OF FUSION ENERGY, 1987, 6 (04) : 371 - 389
  • [30] NUCLEAR ASPECTS AND DESIGN OF AN INERTIAL CONFINEMENT FUSION-REACTOR
    NAKAI, S
    NAKASHIMA, H
    FUSION ENGINEERING AND DESIGN, 1991, 16 : 173 - 182