Multi-objective particle swarm optimization on ultra-thin silicon solar cells

被引:2
|
作者
Atalay, Ipek Anil [1 ]
Gunes, Hasan Alper [1 ]
Alpkilic, Ahmet Mesut [1 ]
Kurt, Hamza [1 ]
机构
[1] TOBB Univ Econ & Technol, Dept Elect & Elect Engn, TR-06560 Ankara, Turkey
来源
JOURNAL OF OPTICS-INDIA | 2020年 / 49卷 / 04期
关键词
Solar cells; Anti-reflection; Absorption enhancement; Surface texturing; Light trapping; Multi-objective particle swarm optimization; ABSORPTION ENHANCEMENT; ANTIREFLECTION; FABRICATION; LITHOGRAPHY;
D O I
10.1007/s12596-020-00653-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding optimized parameters for any photonic device is a challenging problem, because as the search space enlarges the computation time and design complexity increase. For higher performance solar cells, various studies have been carried out to procure optimized parameters, to attain better performance and low cost as well. In this study, we used a multi-objective particle swarm optimization approach to search design space effectively and obtain fixed parameters for enhanced solar spectrum absorption. Numerical investigations are conducted for pyramid surface pattern, to find proper solar cell parameters for minimum reflection and maximum light trapping which give rise to enhanced absorption of photons. For the ultra-thin-film silicon solar cell having a thickness of 1 mu m, a designed double-sided pyramid structure provides an ideal short-circuit photocurrent of 34.23 mA/cm(2). In this regard, the proposed approach can be applied to different film thicknesses of semiconductors for different photonic applications by manipulating the reflection/transmission coefficient and light trapping mechanism.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
  • [21] A particle swarm optimization for multi-objective flowshop scheduling
    D. Y. Sha
    Hsing Hung Lin
    The International Journal of Advanced Manufacturing Technology, 2009, 45 (7-8) : 749 - 758
  • [22] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [23] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [24] Molecular docking with multi-objective particle swarm optimization
    Janson, Stefan
    Merkle, Daniel
    Middendorf, Martin
    APPLIED SOFT COMPUTING, 2008, 8 (01) : 666 - 675
  • [25] Intelligent particle swarm optimization in multi-objective problems
    Ho, Shinn-Jang
    Ku, Wen-Yuan
    Jou, Jun-Wun
    Hung, Ming-Hao
    Ho, Shinn-Ying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 790 - 800
  • [26] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [27] A particle swarm optimization for multi-objective flowshop scheduling
    Sha, D. Y.
    Lin, Hsing-Hung
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 45 (7-8): : 749 - 758
  • [28] Multi-objective Particle Swarm Optimization in Intrusion Detection
    Cleetus, Nimmy
    Dhanya, K. A.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 175 - 185
  • [29] MOVPSO: Vortex Multi-Objective Particle Swarm Optimization
    Meza, Joaquin
    Espitia, Helbert
    Montenegro, Carlos
    Gimenez, Elena
    Gonzalez-Crespo, Ruben
    APPLIED SOFT COMPUTING, 2017, 52 : 1042 - 1057
  • [30] Correlative Particle Swarm Optimization for Multi-objective Problems
    Shen, Yuanxia
    Wang, Guoyin
    Liu, Qun
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 17 - 25