The average value of Fourier coefficients of cusp forms in arithmetic progressions

被引:9
|
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Arithmetic progression; Cusp form; Fourier coefficient; RAMANUJAN FUNCTION; DIVISOR PROBLEM; SUMS;
D O I
10.1016/j.jnt.2008.05.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently Blomer showed that if alpha(n) denote the normalized Fourier coefficients of any holomorphic cusp form f with integral weight, then [GRAPHICS] holds uniformly in q <= X. By an elementary argument we show that independent of q, [GRAPHICS] where alpha(n) could be the normalized Fourier coefficients of any reasonable cusp forms, including Maass cusp forms, holomorphic Cusp forms with half-integral or integral weights. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 50 条
  • [21] SUMS OF FOURIER COEFFICIENTS OF CUSP FORMS
    Lau, Yuk-Kam
    Lue, Guangshi
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (03): : 687 - 716
  • [22] On the Signs of Fourier Coefficients of Cusp Forms
    Marvin Knopp
    Winfried Kohnen
    Wladimir Pribitkin
    The Ramanujan Journal, 2003, 7 : 269 - 277
  • [23] ESTIMATES FOR FOURIER COEFFICIENTS OF CUSP FORMS
    RAGHAVAN, S
    WEISSAUER, R
    NUMBER THEORY AND DYNAMICAL SYSTEMS, 1989, 134 : 87 - 102
  • [24] FOURIER COEFFICIENTS OF CERTAIN CUSP FORMS
    WATABE, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (08): : 578 - 582
  • [25] On signs of Fourier coefficients of cusp forms
    Matomaki, Kaisa
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 : 207 - 222
  • [26] FOURIER COEFFICIENTS OF HILBERT CUSP FORMS ASSOCIATED WITH MIXED HILBERT CUSP FORMS
    Lee, Min Ho
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (01): : 19 - 29
  • [27] On triple correlations of Fourier coefficients of cusp forms
    Lu, Guangshi
    Xi, Ping
    JOURNAL OF NUMBER THEORY, 2018, 183 : 485 - 492
  • [28] Some remarks on the Fourier coefficients of cusp forms
    Kumar, Balesh
    Mehta, Jay
    Viswanadham, G. K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (09) : 1935 - 1943
  • [29] Triple correlations of Fourier coefficients of cusp forms
    Lin, Yongxiao
    RAMANUJAN JOURNAL, 2018, 45 (03): : 841 - 858
  • [30] On the signs of Fourier coefficients of Hilbert cusp forms
    Ritwik Pal
    The Ramanujan Journal, 2020, 53 : 467 - 481