The average value of Fourier coefficients of cusp forms in arithmetic progressions

被引:9
|
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Arithmetic progression; Cusp form; Fourier coefficient; RAMANUJAN FUNCTION; DIVISOR PROBLEM; SUMS;
D O I
10.1016/j.jnt.2008.05.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently Blomer showed that if alpha(n) denote the normalized Fourier coefficients of any holomorphic cusp form f with integral weight, then [GRAPHICS] holds uniformly in q <= X. By an elementary argument we show that independent of q, [GRAPHICS] where alpha(n) could be the normalized Fourier coefficients of any reasonable cusp forms, including Maass cusp forms, holomorphic Cusp forms with half-integral or integral weights. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 50 条