Refining inductive bias in unsupervised learning via constraints

被引:0
|
作者
Wagstaff, K [1 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:1112 / 1112
页数:1
相关论文
共 50 条
  • [41] Unsupervised Learning of Word Segmentation Rules with Genetic Algorithms and Inductive Logic Programming
    Dimitar Kazakov
    Suresh Manandhar
    Machine Learning, 2001, 43 : 121 - 162
  • [42] Using case-based reasoning in interpreting unsupervised inductive learning results
    Ho, TB
    Luong, CM
    IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 258 - 263
  • [43] On the Inductive Bias of Dropout
    Helmbold, David P.
    Long, Philip M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 3403 - 3454
  • [44] Unsupervised learning of word classes using function word constraints
    Elliott, J
    CCCT 2003, VOL 5, PROCEEDINGS: COMPUTER, COMMUNICATION AND CONTROL TECHNOLOGIES: II, 2003, : 143 - 148
  • [45] On the inductive bias of dropout
    Helmbold, David P.
    Long, Philip M.
    Journal of Machine Learning Research, 2015, 16 : 3403 - 3454
  • [46] Automatic Velocity Analysis Based on Unsupervised Physical Constraints Learning
    Cheng, Qiao
    Gong, Xiangbo
    Hu, Bin
    Zhang, Junming
    Zhu, Hongyu
    Lv, Shiqi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [47] Model-Free Unsupervised Learning for Optimization Problems with Constraints
    Sun, Chengjian
    Liu, Dong
    Yang, Chenyang
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 392 - 397
  • [48] Automatic Velocity Analysis Based on Unsupervised Physical Constraints Learning
    Cheng, Qiao
    Gong, Xiangbo
    Hu, Bin
    Zhang, Junming
    Zhu, Hongyu
    Lv, Shiqi
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62 : 1 - 14
  • [49] Unsupervised Learning via Total Correlation Explanation
    Ver Steeg, Greg
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 5151 - 5155
  • [50] Unsupervised Object Learning via Common Fate
    Tangemann, Matthias
    Schneider, Steffen
    von Kuegelgen, Julius
    Locatello, Francesco
    Gehler, Peter
    Brox, Thomas
    Kuemmerer, Matthias
    Bethge, Matthias
    Schoelkopf, Bernhard
    CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 213, 2023, 213 : 281 - 327