On surfaces with pg=q=2 and non-birational bicanonical maps

被引:23
|
作者
Ciliberto, C
Lopes, MM
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
关键词
D O I
10.1515/advg.2002.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is devoted to the classification of irregular surfaces of general type with p(g) = q = 2 and non-birational bicanonical map. The main result is that, if S is such a surface and if S is minimal with no pencil of curves of genus 2, then S is a double cover of a principally polarized abelian surface (A, Theta), with Theta irreducible. The double cover S --> A is branched along a divisor B is an element of \2Theta\, having at most double points and so K-S(2) = 4.
引用
收藏
页码:281 / 300
页数:20
相关论文
共 50 条
  • [31] BIRATIONAL MAPS OF X(1) INTO P2
    Mikoc, Damir
    Muic, Goran
    GLASNIK MATEMATICKI, 2013, 48 (02) : 301 - 312
  • [32] The classification of isotrivially fibred surfaces with pg = q = 2
    Matteo Penegini
    Collectanea mathematica, 2011, 62 : 239 - 274
  • [33] A note on surfaces with pg = q=2 and an irrational fibration
    Penegini, Matteo
    Polizzi, Francesco
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 61 - 73
  • [34] Birational symmetries of laminated surfaces (vol 561, pg 199, 2003)
    Cantat, S
    Favre, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 582 : 229 - 231
  • [35] Special birational structures on non-Kahlerian complex surfaces
    Dloussky, Georges
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (01): : 76 - 122
  • [36] Surfaces with pg=q=3
    Gian Pietro Pirola
    manuscripta mathematica, 2002, 108 : 163 - 170
  • [37] Surfaces with pg=q=3
    Pirola, GP
    MANUSCRIPTA MATHEMATICA, 2002, 108 (02) : 163 - 170
  • [38] Symbolic powers of perfect ideals of codimension 2 and birational maps
    Ramos, Zaqueu
    Simis, Aron
    JOURNAL OF ALGEBRA, 2014, 413 : 153 - 197
  • [39] Zero entropy for some birational maps of C2
    Cima, Anna
    Zafar, Sundus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (02) : 765 - 781
  • [40] Ruled cubic surfaces in PG(4,q), Baer subplanes of PG(2, q2) and Hermitian curves
    Casse, R
    Quinn, CT
    DISCRETE MATHEMATICS, 2002, 248 (1-3) : 17 - 25